

Every effort has been made to ensure that all statements and information contained herein are
accurate, however the SmartCLIDE Project Partners accept no liability for any error or omission
in the same.

© 2020 Copyright in this document remains vested in the SmartCLIDE Project Partners.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871177

Deliverable D1.4

The SmartCLIDE Concept

WP 1

Project Acronym & Number: SmartCLIDE – GA 871177

Project Title:

Smart Cloud Integrated Development Environment
supporting the full-stack implementation,
composition and deployment of data-centered
services and applications in the cloud

Status: Final

Dissemination Level: Public

Authors: ATB

Contributors: All Partners

Document Identifier: D1.4 The SmartCLIDE Concept v1.0

Date: 31.10.2020

Revision: 1.0

Project website address: https://smartclide.eu

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 2

 Confidentiality: Public

Partner Contacts

Institut für angewandte Systemtechnik Bremen GmbH (ATB), Germany
Intrasoft International SA (INTRA), Luxembourg
Fundación Instituto Internacional de Investigación en Inteligencia Artificial y
Ciencias de la Computacion (AIR), Spain
University of Macedonia (UoM), Greece
Ethniko Kentro Erevnas Kai Technologikis Anaptyxis (CERTH), Greece
X/OPEN Company Limited (TOG), United Kingdom
Eclipse Foundation Europe GMBH (ECLIPSE), Germany
Wellness Telecom SL (WT), Spain
Unparallel Innovation LDA (UNP), Portugal
CONTACT Software GmbH (CONTACT), Germany
Kairos Digital, Analytics and Big
Data Solutions SL (KAIROS DS), Spain

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 3

 Confidentiality: Public

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

Document Control

Version Notes Date

0.1 Creation of the document 22.07.2020

0.2 First inputs from technology developers 04.09.2020

0.4 Overall Concept 02.10.2020

0.5 TRL4 Lab Validations 09.10.2020

0.6 SmartCLIDE features 16.10.2020

0.8 Internal review from all partners 27.10.2002

0.9 Internal review from dedicated reviewers 30.10.2002

1.0 Final reviews and QA version for EC submission 03.11.2020

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 4

 Confidentiality: Public

Abbreviations

AB Advisory Board

AI Artificial
Intelligence

API
Application
Programming
Interface

App Software Application

APM Adaptive Project
Management

AWS Amazon Web
Services

B2B Business-to-Business

BC Business Case

BPMN Business Process
Model and Notation

D Deliverable

DL Deep Learning

DLE Deep Learning
Engine

DNS Domain Name
System

DoA Description of
Action

DSLs Domain-Specific
Languages

EA Ethical Adviser

PB Plenary Board

EC European
Commission

e.g. exempli gratia = for
example

etc. et cetera

EU European Union

FP7 Framework
Programme 7

GA Grant Agreement

GDPR
General Data
Protection
Regulation

GLSPs Graphical Language
Server Platforms

HTML HyperText Markup
Language

IaaS Infrastructure-as-a-
Service

ICT
Information and
Communication
Technology

IDE
Integrated
Development
Environment

i.e. id est = that is to say

IP Intellectual Property

IT
Information
Technology

IPR Intellectual Property
Rights

KPI Key Performance
Indicator

LSPs Language Server
Protocols

M Month

ML Machine Learning

NLP Natural Language
Processing

OWL Web Ontology
Language

PaaS Platform-as-a-
Service

PB Plenary Board

PC Project Coordinator
PO Product Owner

PQA Project Quality
Assurance

QA Quality Assurance

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 5

 Confidentiality: Public

RDF
Resource
Description
Framework

REST REpresentational
State Transfer

RMV Runtime Monitoring
& Verification

RTD
Research and
Technological
Development

SaaS Software-as-a-
Service

SME Small and Medium
Sized Enterprise

SC Steering Committee

SOAP Simple Object
Access Protocol

STQA
Scientific and
Technical Quality
Assurance

T Task

UDDI

Universal
Description,
Discovery and
Integration

UML
Unified Modelling
Language

URI
Universal Resource
Identifier

URL
Universal Resource
Locator

UX User Experience

VoIP Voice over IP

WP Work Package

WPL Work Package
Leader

WPMT Work Package
Management Team

w.r.t. with respect to

WSDL Web Service
Definition Language

XML eXtensible Markup
Language

XMP eXtensible Metadata
Platform

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 6

 Confidentiality: Public

Executive Summary

The current document presents deliverable D1.4 - SmartCLIDE Concept. The work
described in this document is part of T1.4 Design of SmartCLIDE System Concept
for WP1 – Specification of SmartCLIDE concept and pilot cases.

The objectives of this task can be summarised in the points below:

§ Definition of the features and the functionalities required for the project,
§ Identification of the basic functionality for the SW components that will be

developed within this project,
§ Elaboration of the project concept based on the collected requirements.

This document summarises the concept of the envisaged SmartCLIDE solution,
based on the requirements of the industrial partners, as well as the state-of-the-art,
including the basic approach for each of the main SW services and components.

The main result of these activities is the high-level concept for the SmartCLIDE
solution, which will serve as the starting point for the detailed design documents.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 7

 Confidentiality: Public

Table of Contents

1 Introduction .. 12

1.1 Document Purpose ... 12

1.2 Approach Applied .. 12

1.3 Structure of this document ... 13

1.4 Relationship to other deliverables .. 13

1.5 Contributors .. 14

2 Overall SmartCLIDE Concept ... 15

2.1 Purpose of SmartCLIDE .. 15

2.2 Targeted users and main use cases ... 17
2.2.1 Targeted Users: ... 17
2.2.2 Main Use Cases .. 19

3 SmartCLIDE Features .. 24

3.1 Smart assistance in the IDE .. 25

3.2 Main SmartCLIDE Workflow(s) .. 26

4 SmartCLIDE Services and Components ... 28

4.1 Discovery of Services and Resources .. 28
4.1.1 TRL 4 Lab Validations (Minimum Viable Product) .. 30

4.2 Services Creation, Composition and Testing ... 35
4.2.1 TRL 4 Lab Validations (Minimum Viable Product) .. 37

4.3 Security ... 52
4.3.1 TRL 4 Lab Validations (Minimum Viable Product) .. 54

4.4 Runtime Monitoring and Verification .. 59
4.4.1 TRL 4 Lab Validations (Minimum Viable Product) .. 62

4.5 Run-time Simulation & Monitoring / Visualisation ... 65
4.5.1 TRL 4 Lab Validations (Minimum Viable Product) .. 66

4.6 Deep Learning Engine .. 69
4.6.1 TRL 4 Lab Validations (Minimum Viable Product) .. 70

4.7 Context Handling ... 76
4.7.1 Context Monitor .. 76
4.7.2 Context Extractor .. 79
4.7.3 Context Provider ... 84
4.7.4 TRL 4 Lab Validations (Minimum Viable Product) .. 85

4.8 User Interface / Workbench ... 87
4.8.1 TRL 4 Lab Validations (Minimum Viable Product) .. 90

4.9 Smart Assistant ... 96
4.9.1 TRL 4 Lab Validations (Minimum Viable Product) .. 97

4.10 Services Deployment .. 100

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 8

 Confidentiality: Public

4.10.1 TRL 4 Lab Validations (Minimum Viable Product) ... 100

5 Conclusions ... 106

6 References ... 107

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 9

 Confidentiality: Public

List of Figures

Figure 1: Approach applied for elaboration of SmartCLIDE Concept ... 12
Figure 2: SmartCLIDE Targeted Users ... 17
Figure 3: Normal Flow example ... 23
Figure 4: The SmartCLIDE Feature Map ... 24
Figure 5: Service Discovery Approach ... 30
Figure 6: Service Discovery - Data Sources ... 32
Figure 7: Service Creation ... 33
Figure 8: Service Discovery - Data Sources ... 34
Figure 9: Overview of the “Service Creation Composition and Testing” Component 37
Figure 10: Main workspace for our Process Decomposition - Workflow Composition tool 38
Figure 11: Elements .. 39
Figure 12: Connectors ... 40
Figure 13: Gateways .. 40
Figure 14: Events .. 41
Figure 15: Project Explorer ... 42
Figure 16: Drag and drop capabilities for the task decomposition ... 43
Figure 17: Connect nodes with connector ... 43
Figure 18: Workflow Options Menu ... 44
Figure 19: Node Options Menu – Properties tab ... 45
Figure 20: Node Options Menu – Functionality Tab .. 46
Figure 21: Service Discovery .. 47
Figure 22: Node options .. 47
Figure 23: Complete Design Workflow .. 48
Figure 24: Service Discovery failed .. 49
Figure 25: Service Creation ... 50
Figure 26: Workflow Completed .. 50
Figure 27: Test and Integration ... 51
Figure 28: High-level overview of the Security component ... 54
Figure 29: The Workflow Composition tool with the Security menu under the Constraints tab . 55
Figure 30: The results of the Security-related Static Analysis component 56
Figure 31: The workflow updated with the results of Vulnerability Assessment 57
Figure 32: Application and Monitor Creation and Deployment ... 61
Figure 33: Use case scenario for monitoring a certain container .. 65
Figure 34: Run-time Simulation & Monitoring – Overview ... 66
Figure 35: Run-time Simulation & Monitoring – Terminal .. 67
Figure 36: Run-time Simulation & Monitoring - Settings .. 68
Figure 37: Deep Learning Engine - Overview .. 70
Figure 38: Deep Learning Engine - Import Data .. 71
Figure 39: Deep Learning Engine - Import Data Details .. 71

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 10

 Confidentiality: Public

Figure 40: Deep Learning Engine - Model Creation ... 72
Figure 41: Deep Learning Engine - Model Creation - Target Features .. 72
Figure 42: Deep Learning Engine - Model Creation - Algorithm and Training 72
Figure 43: Deep Learning Engine - Data Visualization - Model selection 73
Figure 44: Deep Learning Engine - Data Visualization - Model metrics 73
Figure 45: Deep Learning Engine - Data Visualization - Model visualization 74
Figure 46: Conceptual Context Handling Architecture ... 76
Figure 47: Conceptual Context Monitor Architecture .. 77
Figure 48: Conceptual Context Extractor architecture .. 80
Figure 49: Context Model for Laboratory Validation ... 85
Figure 50: Overview of workspace organization in Eclipse Che .. 89
Figure 51: Diagram of SmartCLIDE IDE and SmartCLIDE components communication 90
Figure 52: Login page for SmartCLIDE ecosystem .. 90
Figure 53: Welcome page when a user logs in .. 91
Figure 54: Services page ... 92
Figure 55: Example of SmartCLIDE plugin to support the development lifecycle 93
Figure 56: Deployments page ... 94
Figure 57: Smart Assistant - Workflow Composition ... 98
Figure 58: Process to deploy new Docker containers ... 100
Figure 59: Service Deployment – Overview ... 101
Figure 60: Service Deployment - Stacks ... 102
Figure 61: Service Deployment - Containers .. 103
Figure 62: Service Deployment - Images .. 104
Figure 63: Service Deployment - New Deployment ... 105

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 11

 Confidentiality: Public

List of Tables

Table 1: SmartCLIDE Purpose ... 15
Table 1: Monitoring of systems/sensors .. 77
Table 2: Parsing of monitoring data .. 78
Table 3: Analysing of monitoring data ... 79
Table 4: Context Identification ... 81
Table 5: Ontological Context Reasoning .. 82
Table 6: Rule-Based Context Reasoning ... 83
Table 7: Statistical Context Reasoning ... 84

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 12

 Confidentiality: Public

1 Introduction

1.1 Document Purpose

The current document presents deliverable D1.4 - SmartCLIDE Concept. The work
described in this document is part of T1.4 Design of SmartCLIDE System Concept
for WP1 – Specification of SmartCLIDE concept and pilot cases.

The objectives of this task can be summarised in the points below:

§ Elaboration of the project concept based on the collected requirements.

§ Definition of the features and the functionalities required for the project,
§ Identification of the basic functionality for the SW components that will be

developed within this project,
This document summarises the concept of the envisaged SmartCLIDE solution,
based on the requirements of the industrial partners, as well as the state-of-the-art,
including the basic approach for each of the main SW services and components.

The main result of these activities is the high-level concept for the SmartCLIDE
solution, which will serve as the starting point for the detailed design documents.

1.2 Approach Applied
The SmartCLIDE concept presented here is the result of a process already started in
the previous deliverable D1.2 Requirements Analysis, and illustrated in Figure 1
below.

Figure 1: Approach applied for elaboration of SmartCLIDE Concept

Concept

Generic Requirements

Business Case
Scenarios Requirements

Own
Solutions &

SotA
Requirements Expertise &

SotA
Visions

Innovations

Consortium
Industrial Partners

Consortium
ICT Vendors

Extra Consortium
Companies

Consortium
RTD Partners

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 13

 Confidentiality: Public

The steps of that process were:

§ Detailed analysis of the pilot cases by the three industrial partners
§ Analysis of the survey results that were gathered from industrial developers

from extra consortium companies.
§ Creation of the textual descriptions of the pilot cases and extraction of needs

and requirements.
§ Collection of the information/insight into the market available solutions of

corresponding application.
§ On top of that, the RTD performers have created an in-depth analysis of the

state-of-the-art R&D activities in the relevant areas, that was used and enriched
by the expertise (of RTD performers), for creation of a generic set of
requirements and generic application scenarios.

§ All participants in the above described activities (see Figure 1) have also
provided technical visions and innovation ideas to complete the generic
requirements. The action was done to introduce the long-term visions for the
future improvements of the solutions.

1.3 Structure of this document
The structure of the document is the following:

§ Section 1, Introduction, includes a concise overview of the overall content of
the document.

§ Section 2, Overall SmartCLIDE Concept, describes the planned key purpose of
the SmartCLIDE solution, and the targeted users of the SmartCLIDE solution
as well as the main use cases for it.

§ Section 3, SmartCLIDE Features, provides an overview of the main top-level
features of the envisaged SmartCLIDE solution.

§ Section 4, SmartCLIDE Services and Components provides a detailed
description of the different SmartCLIDE ICT technologies covering the
challenges that will be addressed, and the approach that will be utilised for
development.

§ Section 5, Conclusions, provides concluding remarks.

1.4 Relationship to other deliverables
This deliverable provides a description of the concept of the envisaged SmartCLIDE
solution and provides the overall conceptual description of the software technologies
based on the results of the task T1.1 Analysis of SOTA and Market Requirements,
T1.2 Specification of Requirements, and T1.3 Specification of pilots and Use Case
Scenarios. This deliverable complements the deliverable D1.3 – Use Case Scenarios

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 14

 Confidentiality: Public

where the use cases are defined and is furthermore tightly related to D1.5 The
SmartCLIDE Architecture where the SmartCLIDE architecture is defined.

1.5 Contributors
All project partners have substantially contributed to this deliverable. In particular,
the RTD partners and technology providers have described their services and
components. KAIROS has led the creation of the overall SmartCLIDE concept
together with ATB. The creation of the SmartCLIDE features map was led by ATB
supported by KAIROS, AIR, CERTH and UNP. ATB has acted as overall editor in
preparing each version of the document using a collaborative and iterative process of
increasing levels of refinement.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 15

 Confidentiality: Public

2 Overall SmartCLIDE Concept

2.1 Purpose of SmartCLIDE
In a nutshell, the final goal of SmartCLIDE is to boost the adoption of Cloud and
Big Data solutions. Cloud computing can be considered as the main enabler of
digital transformation, since it allows organisations to disengage their growth from
the need to acquire more powerful infrastructures. However, the creation and
composition of new services in the cloud have increased in complexity, thus slowing
down the progress towards the digital transformation process of business and public
administrations.

When companies face the creation or composition of new services in their clouds,
they can (a) develop services from scratch; (b) create new services by
composition or (c) employ some pricing model. To each of these scenarios,
SmartCLIDE will set different aims in the pursuit of overcoming their limitations
and achieving SmartCLIDE’s final goal.

Table 1: SmartCLIDE Purpose

Main Objective: Boost the adoption of Cloud and Big Data solutions

Services
Creation

Limitations Aims of SmartCLIDE

A) From Scratch Complex & Expensive & Time
Consuming:
- Large number of technologies in
the whole stack.

- Low supply of staff in the
market

- Uneven maturity level of the
development technologies hinders
debugging tasks and QA activities
(e.g. specification and automatic
execution of unit tests).

Faster and more effective
development of cloud and
big data services

Gaining deeper insights on
how cloud and code works
(from novel to expert)

B) Composition
of Services

Data and Services management
from hybrid clouds and multiple
sources is complex.

Marketplaces coupled to IaaS and
PaaS providers.
Lack of a uniform classification or
documentation.
QoS or Security can be
compromised by such services
and their integration.

More secure and easy way
to reuse quality code and
automated cataloguing
services

Gaining trust and
facilitating the reuse of
services

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 16

 Confidentiality: Public

Main Objective: Boost the adoption of Cloud and Big Data solutions

Discovery and validation of
valuable and secure services
mostly manual and demonstrated
by trial and error.

C) Pricing
models

Very difficult prediction and
control of costs

Models depending on different
variables and their combination:
time of usage, resources (memory,
storage, capacity), predictions
obtained, volume of transferred
data…

Code learning tool

Gaining deeper
understanding about the cost
of Big Data and Cloud

SmartCLIDE will overcome these limitations by proposing a new smart and cloud-
native IDE. Among the more relevant features of this IDE will be:

§ SmartCLIDE will be a Cloud-based IDE and will boost the adoption of Cloud
solutions. The cloud nature of the environment will enable collaboration
between different stakeholders, and the support for cloud solutions will pave
the way for the digital transformation.

§ SmartCLIDE will make use of a Deep Learning Engine to automatically
categorize the available resources before presenting them to the end-users. The
cloud workbench will provide the end-user with multiple high level
abstractions at all stages (requirements, design, development, testing,
deployment and run-time). SmartCLIDE will provide several categories of
abstractions: at development stage, SmartCLIDE will provide abstractions on
data transformations or processing; at testing stage, mechanisms to visualize
flow and status or artefacts to automatically test the expected behaviour; at
deployment stage, abstractions of physical and virtual resources; or at run-time,
mechanisms to monitor the performance and operation of the services

§ SmartCLIDE is a new smart cloud-native Integrated Development
Environment, based on the coding-by-demonstration principle. It will support
creators of cloud services in the collaborative discovery, creation, composition,
testing, and deployment of full-stack data-centred services and applications in
the cloud.

§ SmartCLIDE will allow the Discovery of IaaS and SaaS services will facilitate
the composition and deployment of new services for staff with no previous
experience in programming or the administration of systems and infrastructure.
Hiding the complexity of infrastructure, and adding intelligence, will allow
selecting the most adequate infrastructure services at each moment.

§ SmartCLIDE is based on the coding-by-demonstration/ programming-by-
example principle. It was conceived already in the early 1970s to teach new
behaviours to computers by providing them with specific examples. The

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 17

 Confidentiality: Public

disruptive approach of SmartCLIDE is that it will make use of this principle
with the objective of generating the underlying software that make the
computer behave in a specific way.

2.2 Targeted users and main use cases

2.2.1 Targeted Users:
The main target users are developers. The tool facilitates the developer's work
through automations and pre-established commands that increase efficiency in tasks
such as version deployment, security tests according to established acceptance
criteria, or software development according to the highest quality standards.

The tool helps eliminate potential dependencies, leading to improved self-
organization and increased end-to-end accountability of the entire development
stack.

SmartCLIDE ultimately helps the developer to achieve quality software and reduce
time, even for novice ones with little understanding of the underlying mechanisms of
data-intensive applications. Therefore, the developer is the main user of the tool.
Despite this, SmartCLIDE will add value to the entire team, including product
owners and managers with some technical skills, the project and the end user who
will use the product directly and indirectly.

Figure 2: SmartCLIDE Targeted Users

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 18

 Confidentiality: Public

Team Value:

Autonomous teams, with end-to-end responsibility, dealing with the full
development stack, must also be able to select the best options for application
deployment and make it available to end users, dealing with the associated
complexity and multiplicity of available technologies.

UX. Product Design. Situated between Business and developers, they can work with
feature specification, user stories, and acceptance testing. They facilitate the
conversion of mock-up schematics to UML diagrams and the interpretation of User
Story Maps, along with the rest of the team.

Product Owner / Scrum Master / Agile Coach. SmartCLIDE facilitates the
overview of the project and the speed / performance of the team, with metrics
according to this type of user. These users are also empowered in the specification,
development, testing, deployment and operation of data-intensive applications in the
cloud. They should be able to easily prototype features that can be enhanced later on
by developers.

Sponsor. SmartCLIDE will support the provision of metrics and Product Roadmaps,
by providing interfaces to integrate such solutions, to simplify the general monitoring
of the product that is being built. Sponsors can receive feedback in a simple way,
which facilitates the understanding of the tasks carried out by the team and improves
communication with them.

Project Value:

SmartCLIDE adds value to the team and, consequently, adds value to the project.
Also, an important factor that increases the capabilities of SmartCLIDE are
integrations with other tools. This fact exponentially increases the use and scope in
the different phases of the project from start to end (end to end), Business model
design, Customer development and Agile product development.

Communication with the tool. Communication through natural language can
bridge the possible gap for less technical users. Integration with tools, both spoken
and written, improves the interaction of users with the platform. (Natural Language
Processing Algorithms, DialogFlow, etc.)

Communication Developers / UX / Business. Integration with tools like Zeplin1
helps in the development flow between designers and developers. Other team
members can view the screens and the flow between them.

Test Users / Relationship with the client. Integration with User Test tools such as
Invision2, Lookback3, Hotjar4, facilitate learning and immediate incorporation into
development cycles. (A / B test, heat maps)

1 https://zeplin.io/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 19

 Confidentiality: Public

Integration with tools related to growth hacking, conversion funnels or Customer
Relationship Management such as Active Campaign5, Typeform6, or CRM such as
Salesforce7, SumaCRM8 or HubSpot9, helps to measure the interest and relationship
with the customer or end user about the project or product. We can measure the
interest of the ideas or the product.

Tasks / Team speed / efficiency. Jira10 or Trello11 integration helps to gain greater
control of the management of the entire team.

Own integrators. Integration with other integration tools, such as Zapier12, can help
the team automate tasks and add value to the projects generated with SmartCLIDE.

Metrics. Metrics related to team productivity, retrospectives and in general metrics
related to digital transformation.

End User Value:

With the above, the end user benefits directly and indirectly from the tool. The team
has greater control over what it produces and makes available to the user. For this
reason, the perceived value of it increases. Likewise, given the need to make changes
to the product, these can be made in a more agile and effective way within the
product development cycles.

Ideally, SmartCLIDE could collect user feedback and automatically incorporate it
into the build process.

2.2.2 Main Use Cases
The development of a product or service can be classified by its level of innovation.
All developments arise from solving a problem detected in users. The way of
approaching the projects is very similar. But the big difference is the uncertainty
resulting from the innovation levels that we face.

Core. Generally, it is about improving an existing product within a company and it
has a direct impact on its operation. Some examples could be improving the look and

2 https://www.invisionapp.com/
3 https://lookback.io/
4 https://www.hotjar.com/
5 https://www.activecampaign.com/
6 https://www.typeform.com/
7 https://www.salesforce.com/
8 https://www.sumacrm.com/
9 https://www.hubspot.com/
10 https://www.atlassian.com/software/jira
11 https://trello.com/
12 https://zapier.com/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 20

 Confidentiality: Public

feel of a corporate website, improving management software to facilitate its use, or
connecting distributed databases to improve customer service.

Adjacent. It can happen when it is detected that the target user of the product uses a
specific functionality intensively and not the other parts. The company can divide the
product as a spin off and turn that function into a new product or service, under a
new brand / branding. For example, a corporate website of a company that has a test
to prepare budgets for a sector, such as reforms, and it is detected that it provides the
user with great value. This can be packaged as another product and sold with a B2B
business model.

New. It is a totally new one. When these solutions have a great impact on one or
several sectors at the same time, they can have a great disruption, such as Uber or
Airbnb, which also have a series of management requirements and references to
exponential organizations that are not relevant at this time.

We must consider how the SmartCLIDE tool fits into the product building
process. To do this we plan a possible use case that facilitates understanding.

Business Model Design

Some member of the team, worker or researcher detects a possible need in the market
or within the company itself. Then, the Sponsor meets with various members of IT,
UX and a PO. With a clear challenge, the business case is analysed, along with the
impact it will have on the customer segment or the value proposition. Is the user and
the value proposition the same? We should remember that society and the needs of
users change at an exponential speed. It is also important to visualize the
environment, how it will affect the solution and if there are similar or substitute
products.

It is convenient to analyse the target market size and finally build the business model
canvas with all the information.

Customer Development:

In this phase we must validate the proposed business model. For this, we will use
customer development techniques and agile product development jointly and
cyclically.

It is very important to empathize with the end user, to know how they think, what
they feel and what is the root of their problem.

Next, a first User Story Map is proposed to facilitate the construction of a first list of
high-level functionalities (epics) that can be evaluated in a roadmap that facilitates
planning and an approximate budget.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 21

 Confidentiality: Public

SmartCLIDE can offer an environment that facilitates the monitoring of the project
at all times from very early stages like these, from planning to production.

The team starts working on the sprints. UX proposes some first Wireframes from
where all the functionalities and UML diagrams are finally extracted. It is important
to integrate SmartCLIDE with other tools that allow the information of all the phases
of the process (initial or later) to be useful for the software that is being built. All
information must be part of a linear, constant and “seamless” process from
start to finish.

The union with other tools such as Jira or Confluence for the management and
monitoring of the project by the entire team, or Axure13, Zeplin that have a greater
impact at the Front-end and Back-end level with the specific functionalities that have
previously been tested with the user.

Agile Development:

Developers evaluate the tasks they can perform during the sprint. SmartCLIDE
detects functionalities and explores code in existing repositories to facilitate code
reuse. In addition, an assistant based on artificial intelligence helps the team to
improve the coding with warnings of possible security flaws, thanks to the
integration of the tool with the acceptance criteria. The quality of the software is an
important aspect.

At the same time, the repositories are connected to the cloud where there are pre-
configurations of containers that facilitate microservices and the production of work.

At the end of the Sprint, the user tests are carried out in order to verify if this increase
in functionality is really what the user needs. In the test, feedback is received from
the user, collected and integrated into SmartCLIDE in the form of diagrams, and
incorporated into the work flow again in the next Sprint.

The information of the process is recorded in SmartCLIDE and builds the basis for
the following Sprints.

The life cycle of the product or service is alive and this adaptation process is
continuous and infinite, because it will always be able to cover a real customer need.

Example:

In a logistics company, the need to optimize the flow of routes carried out by
couriers is detected. The objective is to deliver packages in less time, increase the
number of deliveries per day and reduce costs for trucks and personnel.

13 https://www.axure.com/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 22

 Confidentiality: Public

User Need. Optimization of delivery routes.

Innovation level. Core. Internal business improvement.

In the first phase of the project, the Sponsor and the team visualize the impact it will
have on the business model and the target customer segment, the relationship with it
or the necessary key resources, and even, if a key association with another business
is necessary.

The team identifies three distinct parts.

1. Collect data. To optimize the routes, it is necessary to have a series of data to
support decision-making:

§ Destinations and addresses of the stops;

§ GPS position at all times;
§ Number of stops/place;

§ Time of each stop;
§ OK or KO on delivery;

§ Number of attempts to get delivery OK;
§ Vehicle, fuel, parts, wheels, etc. ;

§ Traffic;
§ Meteorology.

2. Construction of a dashboard that shows the collected data, statistics, vehicle use,
etc., individually, globally and grouped under different filters.

3. Given the complexity for the elaboration of the new routes according to the data
collected, it is planned to build an algorithm based on machine learning that learns
about the data collected and continues to refine the routes. Decision making can be
verified by the person in charge.

In the context of this example, which follows an agile product development life
cycle, one of the use cases that shows how the SmartCLIDE environment works is
“Getting all trackings related to a specific courier, date and status”.

Actor: A Product Owner

Preconditions: The user has been previously logged in. Therefore, the system knows
the user is a PO working in tracking services

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 23

 Confidentiality: Public

Normal flow:

Figure 3: Normal Flow example

§ The PO drags the desired table (Table 1) from the data sources panel into the

canvas
§ Then, the IDE shows a pre-visualisation of the table with its fields shown.
§ The user selects the fields (e.g. “Courier”. “Order Status” and “Order Date”)

then the user selects/types the desired one.
§ The system monitors the actions of the user from the start, then it infers what

the user is doing, what it is associated with, its specifications, tests, code, etc.
Alternative flow: The PO uses a Gherkin-like syntax, for example: “As a Tracking
PO I want to obtain all trackings of courier X, state Y and date Z”.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 24

 Confidentiality: Public

3 SmartCLIDE Features
The general scheme of the SmartCLIDE architecture is illustrated in Figure 4. In this
figure the main features of the SmartCLIDE solution are depicted, such as the Smart
Assistant and the SmartCLIDE workflows.

Figure 4: The SmartCLIDE Feature Map

The big difference with the initial approach is the inclusion of an API's that manages
the possibility of integration with other tools that allow the information of all the
phases of the process (end to end) to be useful for the software that is being built.
Thereby, the focus within the SmartCLIDE project will be on developing the
SmartCLIDE technologies including the API interface.

This aspect increases the power of SmartCLIDE and helps to build more robust user-
centred solutions, that manage all the information.

The goal is to incorporate validated knowledge into the project or product in a
"seamless" start-to-finish process.

Assistant

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 25

 Confidentiality: Public

3.1 Smart assistance in the IDE
The purpose of the Smart Assistant is to help both technical and non-technical users
during the Software Development Stages. That is, ranging from the requirements and
design to the deployment of the services.

This will be performed in two different ways: (i) through a menu in the general
interface of the IDE, where all active suggestions will appear classified by software
development stage, (ii) by a context menu attached to non-intrusive, but visible
enough, marker where the suggestion makes sense. With this interface, interruptions
to skilled developers are minimised, as they do not need assistance on a regular basis,
but in case of an explicit request of help, while keeping away from a very detailed
design with lots of information, confusing for the non-programming crew. The IDE
layout can be adapted depending on the kind of user, changing the type and
"deepness" based on the users' skills.

The Smart Assistant will potentially provide recommendations on the following
topics to help users during software development:

§ During the Requirements & Design phase:

- Guidance to define requirements and user stories using the Gherkin syntax.

- Reusability of previous resources, such as BPMN schemes, or components
that probably are close to being needed in a task flow, based on previously
existent schemes.

§ During the Development phase:

- Code analysis and syntax checking.

- Code autocompletion based on the developer behaviour and context.

- Guidance through the process of pushing changes into a version control
repository.

§ During the Testing phase:

- Interpretations of the results from the tests.

- Suggestion and offer of a set of acceptance tests, preferably based on
initial Gherkin specifications.

§ During the Deployment phase:

- Suggestions or guidance through the deployment according to the Services
Deployment component, such as the convenience of an architecture.

- Suggestions on configurations for deployment based on services
properties.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 26

 Confidentiality: Public

§ As an all-round helper, advising on the next steps to be taken based on the
current context of the user.

The Smart Assistant is supported both by the DLE and potentially by IDE plugins
and guided by the monitoring of user actions.

3.2 Main SmartCLIDE Workflow(s)

Key features of backend services and service discovery

The key components, along with their most important features, are presented in the
following list:

§ SmartCLIDE RESTful API Gateway
In a complex ecosystem like the one of the SmartCLIDE project, a module
responsible for the orchestration of the overall operation is a necessity.
Therefore, the design and development of a communication/network gateway,
namely the SmartCLIDE REST API is proposed. It will be a RESTful API that
will expose the several SmartCLIDE functionalities to the outside world. In
particular, the SmartCLIDE REST API will be responsible for:

- Exposing the SmartCLIDE platform’s functionalities to the users through
the designed and developed user interfaces.

- Integration with external tools.

- Routing, data-transformation and load balancing (where applicable).

- Ensuring adequate security level using best industry standards such as
OAuth 2.0.

For building the SmartCLIDE REST API the Python Eve RESTful Framework
[6] is proposed.

Message Oriented Middleware (MoM)

This component will be responsible for the inter-component communication
within the SmartCLIDE platform. It will be implemented as a message broker
and provide asynchronous communication functionalities based on the publish-
subscribe (i.e. pub/sub) pattern. The MoM component will be responsible for
providing the following three functionalities:

§ Message routing: MoM should support several message routing policies and
message delivery guarantees (e.g. at-most-once and exactly-once).

§ Message transformation: MoM will transform the data/messages from the
sender’s native format to the receiver’s native format.

§ Message validation: MoM will be able to check if the exchanged messages,
either at the sender’s or at the receiver’s end, comply with a specific format.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 27

 Confidentiality: Public

There are several message broker’s software available, with popular choices
being Apache Kafka [6], Apache Qpid [7]. They support the following critical
features:
§ Loose coupling of the components, which will enhance their

developability and maintainability.
§ Increased scalability, as pub/sub pattern can serve multiple senders and

receivers simultaneously.
§ Increased security, as the MoM component will implement specific

security policies.
§ SmartCLIDE Databases

A key characteristic of the microservice architecture is that the services are
loosely coupled and communicate only via APIs. One way to achieve loose
coupling is by each service having its own database. Thus, each microservice
will be in charge of controlling and managing its own database and importing
and converting any external data sources through appropriate wrappers,
adhering to the SmartCLIDE data model.

§ Containerization and deployment mechanisms
The developed backend services along with the other modules of the overall
SmartCLIDE platform will be containerized in order to be easily deployable.
This process will utilize the dominant Docker [16] mechanism for this purpose.
Additionally, the overall deployment mechanism of the SmartCLIDE platform
will make use of the open-source container-orchestration system Kubernetes
[17].

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 28

 Confidentiality: Public

4 SmartCLIDE Services and Components

4.1 Discovery of Services and Resources
This section explains the approach described in D1.2 for the discovery of services
from a conceptual perspective.

Service Discovery is the IDE component responsible for three features: retrieving the
existent services’ data from a previously determined array of sources, store them at
the SmartCLIDE Service Registry, and act as an interface with this last component
regarding service access (e.g. provide them to the classification implementation
running at the DLE). In other words, it will act as a proxy for the service request
queries, handing over the results to the Services Creation and Composition
component, the DLE, or the Security Component in case they are requested.

Services will have to be fetched from the user-specified sources before their
classification and storage. There are some key differences between regular service
querying to an existing registry component, and scraping services from other sources
not aimed at this purpose, such as web pages or code repositories. Hence, two
approaches will be followed:

§ a) Query regular, registry-based services
§ b) Scraping of services from HTML sites

Regular service registries take the responsibility of communications amongst/with
services, monitoring the health of existing processes and broadcasting the existence
of newly available ones along with their endpoint. Configurations and extra
information on service properties, such as functional and non-functional (QoS)
parameters, are to be desired, in the form of ontologies. Most of these registries have
a REST API which allows to query information regarding existing services along
with their current status, and enabling to interact with them for management
purposes.

The idea behind this approach is to query registries to retrieve services’ status and
the most significant amount of information, independently from the kind of ontology
or descriptor –even missing- which contains it.

This information will be used by the classification process in the DLE to extract and
store services in an IDE-Registry, composed by the service data + classification
results in a structured/standardised way. This will be queried by the Service
Discovery to retrieve and hand over the best suggestions to the Service Creation and
Composition component. This approach is chosen because the combination of
Service Discovery and Classification executed for each service discovery request
will not potentially be fast enough to deliver results in a proficiently enough manner.

Likewise, public web pages containing links to services will be taken as a reference
to develop both a process which extracts them given an initial URL and to compose a

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 29

 Confidentiality: Public

dataset to train DLE classifiers. Code repositories will be queried in case services
have their matching code available.

Later, this process will be tested against repositories and particularly considering
those belonging to the use cases with the aim to a) enhance the classification
methodology b) adjust their behaviour to different needs. Finally, new services
created within the IDE will enforce the user to add the information needed to deal
with classification for later reuse, or using direct transformations from code such as
WSDL+Java and stored along with other service data.

Once the extraction is performed and the dataset is conformed, a model will be built
to perform further classifications independent –as far as possible- from the structured
form. More information on the classification experiments can be found at section
4.6.2.

The approach can be observed in Figure 5.

Three processes will conform to the Service Discovery:

§ Extraction of the services from different sources along with a minimum set of
features. This set will be defined with the collaboration of the project
consortium.

§ Check information fields and save them into SmartCLIDE Service Repository
(new services/existent services).

§ Fetch services from the SmartCLIDE Service Repository matching specific
constraint parameters.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 30

 Confidentiality: Public

A daemon will check the repository to find unclassified services. These services will
be sent to the DLE to the classification process and subsequently updated

Figure 5: Service Discovery Approach

4.1.1 TRL 4 Lab Validations (Minimum Viable Product)
In microservice architectures, one of the main goals is to allow services to discover
and interact with each other. Distributed platforms not only make this task more
complex but also imply a challenge in terms of health check (services status) and
broadcasting newly available assets. It is crucial to decide where and how to store the
available information, the same as the setups needed by the applications.

Service registries extend the concept of an application-oriented to Web Services, by
allowing clients or applications to access to a variety of services which match
specific search criteria. Different standards, as discussed in the D1.2 Requirements
Analysis, have arisen to define and standardise services' information to become a
common registration and discovery method.

Here we will briefly recap and narrow their concepts down to the experimental
approach, and which features will be employed.

UDDI registry aims to be a Service Discovery method using WSDL. WSDL is part
of the original specification of Web Services. It can be searched in different ways,
depending on the target of the query, to retrieve information. ebXML is similar to
UDDI; it allows companies to find each other, define agreements and communicate
using XML messages to support commercial transactions. The purpose is to act

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 31

 Confidentiality: Public

without human intervention through the Web. It has a lot of points in common with
UDDI/WSDL/SOAP.

The application of these standards must be executed in a planned manner and
observing some limitations. Hence, in many cases, rules are not applied to the
registries, and valuable service discovery is not performed. This fact is aggravated by
the circumstance that public repositories are not that popular, being private
companies and, therefore, their internal needs what stands for the service discovery
implementation.

The cloud paradigm has deepened this problem, flourishing registries for each
provider architecture and allowing companies to have their customised services.
These services follow the standard definition but have evolved to fit the nowadays
needs. For example, AWS provides integrated service discovery capabilities for
containers deployed in their platform, using a component called Route53 and an
auto-naming feature via DNS – to provide dynamic resolving with understandable
names – and providing health checks which ensure that only alive services are
returned. The usage of third parties software as an alternative is also common, like
Consul14 or Eureka15.

The combination of the items mentioned above (standards, data formats, querying
techniques, information delivery and communication/health methods) is what the
Service Discovery component will tackle and take as a reference to query and store
the services data.

In a first approach, public web service listings will be used to retrieve a dataset. This
dataset will consider the heterogeneity of the data with no further references or
standards; and will resolve the web service scraping for particular use cases. Besides,
it will feed the DLE classification process.

A first implementation will only consider the re-utilisation of already existing and
successfully deployed services. This is motivated by the fact that retrieving the code
or container image for a working asset does not seem to be feasible, because of the
limited availability of resources outside of a particular company. Moreover, an
external registry independent from SmartCLIDE IDE component may have to be
used to deploy and manage the services.

The experiment process will stand as follows. As mentioned, the system will have to
be able to work both with standard and non-standard data schemes, containing the
services information. It will look into predefined sources for services already
deployed, or just barely available at repositories in the form of code or container
images. It will look at the predefined sources (at IDE level or project level, Figure 6)
and query them using an API, or scraping if plain web URLs are provided. In both
cases, health checks will be queried or performed to filter unavailable items. This
process will feed an internal IDE registry or database for later classification.

14 https://www.consul.io/
15 https://github.com/Netflix/eureka

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 32

 Confidentiality: Public

In terms of web scraping, if no API is provided, each endpoint will have to be
inspected to check the availability and information (descriptors) of its work. A search
for descriptors will be also performed.

Figure 6: Service Discovery - Data Sources

In conclusion, Service Discovery experiment will extract information from web
sources, registries of already working services and potential repositories from
companies; being the services’ related information contained in different kinds of
ontologies or other non-standard structures, such as web pages. Service Discovery
will also be fed by newly created services, which will have a descriptor containing
the properties required for classification, needed by the partners/use cases and filled
in during their creation or updated while being coded.

Both types of services, new ones and discovered, will be stored in an internal
registry/database for their latter classification by the DLE. Thus, updated services,
along with their classification, will be handed over when queried by the Services
Creation & Composition component in a faster way. As a side note, classification
heterogeneous information will only be needed for discovered services, as new ones
will be enforced to fill up a convenient descriptor to classify and reuse the services.

The interface of the Service Discovery component will have to:

§ a) Request standardised data while creating or composing a service, with
classification purposes.

§ b) Allow to set up, at IDE level or even project level, where the Service
Discovery has to search for the resources. This information will be stored at the
component.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 33

 Confidentiality: Public

These interfaces will be as follows. Item a) is already defined by UoM in Figure 7
(detail below). In this screen, only final fields related to specific service features
related to classification will have to be changed. With respect to b), the Service
Discovery set up will include three tabs. One of them for regular repositories, which
will contain an editable list of sources obtainable through traditional registry
repositories. Another tab for public web scraping, where a base URL and some extra,
including parameters for managing checks and search combinations. The third tab
will contain all the sources present in repositories (Figure 8).

Figure 7: Service Creation

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 34

 Confidentiality: Public

Figure 8: Service Discovery - Data Sources

The Service Discovery component will supply a REST API to connect with it and
forward the service queries to the Service Registry in a homogenous way. The means
of connection will depend on the Service Registry implementation (e.g. Nexus16) and
its querying methods. These connections will be either directly implemented REST
endpoints, or via a middleware. Sources information, as said, will be stored in an
internal component storage.

16 https://www.sonatype.com/nexus-repository-oss-vs.-pro-features

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 35

 Confidentiality: Public

4.2 Services Creation, Composition and Testing
In this section, we specify our approach for delivering the requirements, related to
the “Service Creation, Composition, and Testing” component, as defined in D.1.2
“Technology Requirements”. We note that this document is not a technical one
(details on the internals of the component will be given in D.1.5 “SmartCLIDE
Architecture”), but only aims at defining the main concepts of the SmartCLIDE
project. Therefore, diagrams do not correspond to a specific language (e.g., UML
component diagrams) and the Minimum Viable Product is comprised of indicative
mock-up screens.

The starting point (and main input) for defining the concept of the “Service Creation,
Composition, and Testing” component is the requirements analysis document, as
outlined below.

SmartCLIDE “Service Creation, Composition, and Testing” component shall be
able to support:

1. the creation of workflows, composed from simple tasks
2. the editing of existing workflows

3. the definition of connectors for single services
4. the use of BPMN for workflows definition
5. the retainment of existing services in a repository

6. the definition of constraints and qualities of interest for a workflow and a service
7. the definition of the functional requirements of a service through an IDE-

integrated XML editor
8. the definition of the licence for a newly developed service

9. the assessment of test coverage of services and workflows
10. the execution of test cases and unit tests

11. the use of linters to identify errors
12. the invocation of external (installed) tools through a command line interface
SmartCLIDE “Services Creation, Composition & Testing” component should
be able to support:

1. the development of usage scenarios for safeguarding the quality requirements of
workflows and services

2. the development of models for predicting the quality levels of services and
workflows

3. the delivery of autocomplete functionalities for workflow definitions and service
creation

4. the assessment of service and workflow maintainability and reusability
5. the performance of integration and acceptance testing, based on external tools

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 36

 Confidentiality: Public

6. the mapping of services to virtual containers
7. the verification and validation of system configuration
Given the above, and: (a) an analysis of existing technologies and tools; (b) an
analysis of the needs of pilot providers, the “Service Creation, Composition, and
Testing” component, can be decomposed to three sub-components interacting with
several other internal components and external tools. We note that 2nd level reliance
to external tools, libraries, or technologies, e.g., the one from “Smart Assistant” to
OWL, are only presented in the corresponding sub-section. An overview of the
“Service Creation Composition and Testing” component is outlined in Figure 9: sub-
components are presented as ochre boxes (termed as Managers), the main
SmartCLIDE (external) components are presented as blue boxes, whereas external
tools, libraries, or technologies as gears. The continuous arrows denote dependency,
whereas the annotations on arrows explain the request. As explained before, Figure
9, does not correspond to the detailed architecture, but only illustrates the relevant
concepts.

Workflow Manager: The Workflow Manager will be responsible for handling all
requirements related to the workflow (i.e., 1-4, and 15-16). The Workflow Manager
will be the entry point for this component, activated for any new project. For the case
of BPMN-based workflows, the Workflow Manager will use technologies similar to
jBPM and Kogito17 for exploiting: (a) BPMN and DMN modellers; (b) creating a
Maven project representing the complete workflow; (c) running the workflow; and
(d) interacting with the workflow for testing and QA purposes. As explained before,
since Workflow Manager is central to this component, it interacts with (usually
initializes) all other managers or SmartCLIDE components. For example, it invokes
the Smart Assistant to get suggestions for autocompletion of the workflow.

Service Manager: The Service Manager will be responsible for managing the
services that are included in the Worflow (identified through Service Discovery, or
developed as new in the SmartCLIDE environment). To this end, it will cover
requirements: 5, 7-8, 15-16. A service in the repository will be represented using a
predefined ontology schema; thus, the developed repository will be an Ontology
Repository. The representation, (among others) will include service name,
description, inputs, outputs. The Service Manager will invoke the Service Discovery
component, and an online IDE (e.g., Eclipse Theia) for creating services (in the form
of a swarm of Microservices—e.g., Kubernetes, or Docker Swarm), as well as the
Smart Assistant to get coding templates for newly created services.

Testing and QA Manager: The Testing and QA Manager will handle requirements:
6, 9-12, 13-14, and 17-19. This manager will be invoked from the other two
managers, and accordingly will be responsible for specifying the testing and quality
assurance process for services and the workflow as a whole. The goal of this
manager will be to set up and execute the testing process, to set up and execute
maintainability analysis, and to set up run-time simulation and monitoring. The
execution of the last part of QA will be handled by the Run-time Simulation &

17 https://kogito.kie.org/get-started/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 37

 Confidentiality: Public

Monitoring component. Given the fact that service specification will be Ontology
based and workflow specification will be based on BPMN, any QA process will need
to rely on corresponding parsers. Regarding testing, we will rely on jBPMN, whereas
for maintainability analysis on software quality models.

Figure 9: Overview of the “Service Creation Composition and Testing” Component

4.2.1 TRL 4 Lab Validations (Minimum Viable Product)
After having analysed the initial requirements gathered from the industrial partners,
as well as their importance, we present the initial mock ups of how the SmartCLIDE
platform would look and feel. SmartCLIDE would be a cloud platform in which the
user will have access by a web browser. The basic functionalities UoM has to
provide are Service Composition, Service Creation and Testing and Integration. We
have created mock-ups for each one of these functionalities by presenting an
example of usage. The proposed mock-up screens have been developed based on the
INTRASOFT pilot case. Along the project, we expect to integrate the feedback and
requests from all the other partners. Prototyping (through mock-ups) can support an
efficient presentation of the platform that takes into account the requirements, in the
sense that they visualise the basic functionality of a system. However, we need to
note that none of the following suggestions are final and by no means represent the
final user interface of the platform, since the specification and architecture of the
SmartCLIDE platform will be finalized in later deliverables.

The workflow starts from the Service Composition Functionality. In Service
Composition, the user can draw a BPMN diagram (a flow chart) that depicts the

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 38

 Confidentiality: Public

functionality of a new process. In Figure 10, we present the main workspace of
Service Composition and the options that it provides.

Figure 10: Main workspace for our Process Decomposition - Workflow Composition tool

The GUI of the “Services Creation, Composition and Testing” component is
composed of three main areas:

§ The Main Workflow area is used for the composition of the Workflow. Here, a
process is defined with the use of nodes and the relations between them. Each
node represents a service and the relations between them can be either
sequential or include conditions.

§ The Materials Menu provides the necessary tools to create and visualize the
Workflow.

§ The Options Menu contains the information, options and general properties of
the workflow and all of its nodes.

Next, we focus on how a workflow is built. In Figure 11, we present the elements,
the nodes and services that the user can add to a workflow. For example, there are
elements for a manual task, a user task, a script task, a business rule, a service task,
or a send or receive task. These elements will support the Service Discovery process,
in the sense that if a user chooses a scripted task then the Service Discovery can look
only for this type of services in the database. In Figure 12, we present the second tab
of the Materials Menu that contains the node connectors (services). Some examples
of possible connectors are sequence flow, flow fork, association and data association.
In Figure 13 we present the third tab that contains the Gateways. Gateways are a

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 39

 Confidentiality: Public

decision option for example an if-then rule. Some of the provided options are: the
basic, the parallel, the inclusive, the exclusive, the complex and the event based. In
Figure 14, the last tab shows the Events. Some options are the boundary, the parallel,
the inclusive, the exclusive and the complex.

Figure 11: Elements

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 40

 Confidentiality: Public

Figure 12: Connectors

Figure 13: Gateways

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 41

 Confidentiality: Public

Figure 14: Events

An element that is common for all IDEs is the Project Explorer (see Figure 15). The
project explorer button allows the navigation through project files. It is collapsible,
with the ability to Lock or Unlock the collapse function. In a Locked state, the user
has the ability to interact with the workflow, its nodes, properties etc. without it
collapsing it enables ease of use and faster navigation. In an unlocked state, as soon
as the explorer window loses focus, it collapses.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 42

 Confidentiality: Public

Figure 15: Project Explorer

An example of how a user can create a new workflow is shown below. The first step
is to drag and drop an element from the Materials Menu and the tab Element. For
example, suppose that he/she chooses the element Task, he/she clicks on it and drags
and drops it on the Main Workflow Area as shown in Figure 16. The circle is the
start node and it is the default node from which a workflow starts. The next step is to
connect the start node and the Task node with a connector from tab Connectors as
shown in Figure 17. This connection implies that when the process starts the first
node (the node that was just dragged and dropped) is the first service to be called.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 43

 Confidentiality: Public

Figure 16: Drag and drop capabilities for the task decomposition

Figure 17: Connect nodes with connector

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 44

 Confidentiality: Public

Subsequently, the Workflow Properties panel is displayed, which consists of basic
information that characterize the workflow. The exact fields have not yet been
specified, so instead, placeholders have been put in their stead. Workflow Options
Menu is selected by default, or by clicking on the workflow as shown in Figure 18.

Figure 18: Workflow Options Menu

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 45

 Confidentiality: Public

Figure 19: Node Options Menu – Properties tab

By clicking on a node, the Node Options Menu opens (Figure 19). This menu
consists of three tabs. The Properties tab include some basic information about the
node such as its name, its previous and its next node and the Node type (Task, Script
Task, etc.). Also, the node’s status is shown. The status indicates if the XML -
Functionality is completed, if an external service is found for the node or if an in-
house service was implemented (in case an External service was not selected or
found).

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 46

 Confidentiality: Public

Figure 20: Node Options Menu – Functionality Tab

On the Functionality tab, we declare the Information and desired Functionality of the
task. Some of these fields may/will be used in the Service Discovery or Service
Creation process. By clicking on the Discovery Process button, the discovery process
starts and the results, if any, are returned. After clicking the Service Discovery
button, a new window is displayed (Figure 21). On the top panel, the Services are
ranked based on their similarity to our Task Functionality values. Here we have the
ability to inspect all the available Services by clicking on them, or by using the
browse buttons. When a service is being inspected, it’s Basic and Functional
information are displayed on the bottom panel, along with its description. Once we
are satisfied with a Service, we can press the final Select button, and select it.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 47

 Confidentiality: Public

Figure 21: Service Discovery

Figure 22: Node options

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 48

 Confidentiality: Public

Afterwards, the Assign Task 1 is complete and ready for use. We now have to
complete the rest of the process decomposition, using the tabbed top menu, or by
using the pop-up right click menu.

The right click menu (see Figure 22) provides a more usable and user-friendly
interface. It gives the ability to quickly add a new Node or use the Recommender
Option in order to get a recommended one based on past decisions or workflows. It
also shows the state of a Node and allows us to define the task functionality and
search for a service without selecting a node and going through its properties.

Figure 23: Complete Design Workflow

Figure 23 shows a completed Workflow with all the necessary nodes. However, most
nodes still require to be paired with a Service, so the Service Discovery function
must be repeated for all of them. In Figure 24, we see that the tasks with name
“Handle Task 1” and “Determine Eligibility” are successfully paired with a service,
but for “Task 2” the Service Discovery process has failed to detect a suitable service.
This situation leaves us with two alternatives. We can either preserve the
functionality of our Workflow as it is and create the required service for the Task, or
we can modify it aiming to find already existing services. Let’s assume that Service
Discovery did not return any results and we talked with our colleagues that reassure
us that we don’t have a service like this in our repositories. In this case, we have to
click the Create Service in order to create the new service as shown in Figure 24.
Once the Service Creation window opens, we see the information we had previously
entered for the Service Discovery (Figure 25). Through this UI, we have the ability
to review and edit any previously completed fields. For example, adding a more
comprehensive description to our newly made service. To pair the information to a

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 49

 Confidentiality: Public

service, we have to locate the service file through the top browse menu. We then
need to map the input and output of the service, and do the final review. Once
everything is in order, we press the Confirmation button.

Figure 24: Service Discovery failed

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 50

 Confidentiality: Public

Figure 25: Service Creation

Figure 26: Workflow Completed

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 51

 Confidentiality: Public

In Figure 26, we can see a screenshot of a complete workflow in which every node
has been successfully matched with a service, either an existing, newly created, or an
In-house one. On the Option Menu, the Workflow Constraints are presented. These
constraints are the same with the Task Constraints. Here, we specify the non-
functional requirements of the Workflow, or of an individual Task. The non-
functional requirements purpose is to evaluate whether our process meets our
performance guidelines / requirements. These fields are not crucial to the completion
and execution of the process, so it’s not mandatory they be filled in. The last step
before the deployment of the process is the Test and Integration phase. This is
achieved through the Integration and Testing menu, which is the third tab of the
Workflow Options as shown in Figure 27. For evaluation purposes, the system
provides some tests. Tests that can be performed are unit tests, from the local project
folder, and SOA tests, that can be local or web based. After the Testing phase,
several metrics are displayed as a result for us to evaluate. If we are satisfied with the
overall state of the process, we can move to the deployment phase.

Figure 27: Test and Integration

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 52

 Confidentiality: Public

4.3 Security
In this section, we specify our approach for delivering the Security component
requirements, as defined in D1.2 Requirements Analysis. Similarly to section 4.2, we
need to stress out that this document aims to introduce the main concepts of the
SmartCLIDE project. Besides, we would like to note that we use indicative mock-up
screens instead of a formal modelling approach to represent Minimum Viable
Product. The formalized overall system architecture will be specified in the D1.5
SmartCLIDE Architecture.

The “Security” component could be specified as a subcomponent of the “Service
Creation, Composition and Testing” component that was thoroughly described in
Section 4.2, and is responsible for providing information for the Security
Constraint tab of the implemented software (i.e., defined workflow). Taking into
account the requirements specified in D1.2, the “Security” component can be
decomposed into three sub-components, which are interacting with additional
internal components and external tools, libraries, and frameworks. A high-level
overview of the “Security” component (that corresponds to the first level of
decomposition) is illustrated in Figure 28. In this figure, similarly to Section 4.2, the
sub-components are presented as green boxes, whereas external tools, libraries, or
frameworks are represented using relevant icons. The continuous arrows denote
dependency, whereas the dashed arrows denote potential (i.e., optional relationship)
that needs further investigation. As already mentioned, the high-level overview
presented in Figure 28 does not necessarily correspond to the actual architecture of
the component. It is used as a means to describe better the underlying concepts and
the envisaged functionalities of the “Security” component in a more comprehensive
and easy-to-understand way.

Security-related Static Analysis: The Security-related Static Analysis
subcomponent will be responsible for handling all the requirements related to the
identification of potentially critical security issues (i.e., potential vulnerabilities) that
reside in the source code of the produced software. More specifically, this
subcomponent will retrieve as input the source code of the different tasks that will be
defined in the Workflow Manager. This source code will be retrieved from: (i) the
code repository, in case a reusable code template/snippet is used, (ii) the service
repository, in case that the task corresponds to the invocation of a service, or (iii) the
actual code that is written by the developer, in case that no reusable service or
template is available and the developer needs to create this task from scratch. The
subcomponent will then invoke the execution of popular static code analysers (either
open-source or commercial) in order to detect security issues that reside in the
different tasks that constitute the overall workflow.

Vulnerability Assessment: The Vulnerability Assessment subcomponent is
responsible for assessing the security level of the different tasks that constitute the
overall workflow, as well as of the workflow (and, in turn, the actual software) itself.
In order to achieve this, this subcomponent will retrieve the source code of the
different tasks and apply a set of carefully constructed Vulnerability Prediction
Models. Similarly to the Security-related Static Analysis subcomponent, the source
code will be retrieved either from the code template repository, or from the service

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 53

 Confidentiality: Public

repository. It can also retrieve the code directly from the user, in case that the task is
created from scratch. The Vulnerability Prediction Models will be based mainly on
text mining and Deep Learning, using popular deep learning libraries like
Tensorflow18 and Keras19. The utilisation of the static analysis results (i.e., produced
by the Security-related Static Analysis component) will be also considered, in order
to examine whether they would enhance the accuracy of the models.

Report Generation: The Report Generation component will be responsible for
aggregating the results produced by the Security-related Static Analysis and the
Vulnerability Assessment components for facilitating their further processing and
comprehension. More specifically, the raw results produced by the Security-related
Static Analysis component will be aggregated and presented to the user in an intuitive
way through Visual Analytics constructs (e.g., charts, graphs, etc.). For this purpose,
well-known visual analytics libraries will be utilised. In addition to this, the reports
of the Vulnerability Assessment component will be presented to the user in an
intuitive way, in order to facilitate the identification of security hot spots (see Figure
30). Finally, both the static analysis and the vulnerability assessment reports will be
available in a machine-readable form (e.g., JSON) in order to facilitate further
processing by other components of the SmartCLIDE framework (if necessary).

18 https://www.tensorflow.org/
19 https://keras.io/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 54

 Confidentiality: Public

Figure 28: High-level overview of the Security component

4.3.1 TRL 4 Lab Validations (Minimum Viable Product)
In this section, the initial mock-ups of the SmartCLIDE platform that are related to
the Security component are presented. As already described in Section 4.2.2,
SmartCLIDE would be a cloud platform in which the user will have access by a web
browser. We have created a set of mock-ups demonstrating how the functionalities of
the Security component should actually be integrated into the broader SmartCLIDE
platform. The main entry point of the functionalities provided by the Security
component is the Constraints tab of the Workflow Composition tool (see Section
4.2.2). As already mentioned, in the Constraints tab, important constraints like
Maintainability are provided, which will be determined through Maintainability
analysis. In a similar manner, a dedicated place for the Security of the defined
process (i.e., workflow) should be also provided, as it is an important constraint of
the overall workflow. The updated Workflow Composition tool having the Security
Menu under the Constraints tab is illustrated in Figure 29.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 55

 Confidentiality: Public

Figure 29: The Workflow Composition tool with the Security menu under the Constraints tab

As can be seen in Figure 29, when the developer has finalised the definition of the
workflow (i.e., process) they can navigate in the Constraints tab on the right part of
the screen, in order to get information about important non-functional requirements.
At the bottom right corner of the screen, there is a dedicated Menu for Security
analysis. In brief, the developer can see some high-level security-related information
produced by the Security component, which are: (i) the Overall Vulnerability Score
(i.e., the vulnerability score of the whole workflow after aggregating the scores of the
tasks from which it is built), and (ii) the Total Number of Security Bugs (i.e., the
total number of security issues that were detected through static analysis). Apart from
this information, the user is equipped with two options: (i) Static Analysis, and (ii)
Vulnerability Assessment. By selecting one of these options, the user triggers the
corresponding component (described in Section 4.3), the analysis is performed, and
the screen is updated in order to inspect the produced results.

If the user clicks on the Static Analysis button the Security-related Static Analysis
subcomponent (see Figure 30) is invoked. The different tasks are retrieved and it is
analysed using the static analysis tools with the proper configuration. When the
analysis is complete, the screen is render and the results are demonstrated to the user
(see Figure 30).

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 56

 Confidentiality: Public

Figure 30: The results of the Security-related Static Analysis component

As can be seen by Figure 30, the static analysis results are presented in an intuitive
way to the user. First of all, they are grouped based on the task to which they belong,
allowing the user to focus separately on the different tasks, which is very useful for
judging the security of the different reusable components. A detailed table is
provided presenting the identified security-related issues (i.e., potential
vulnerabilities). Important information is displayed for each identified issue,
including its type (e.g., Buffer Overflow issue, Injection issue, etc.), its exact location
in the code, and its severity. Additional useful graphs will be provided illustrating
high-level information, by aggregating the raw results produced by static analysis.
For instance, as can be seen by Figure 30, charts can be provided showing the
percentage of critical issues that each task contains. This could be used by the user in
order to decide whether the option to use any of these tasks may be risky and needs
to be reconsidered.

If the user clicks on the Vulnerability Assessment button in Figure 29, the
Vulnerability Assessment subcomponent (see Figure 28) is invoked. The different
tasks are retrieved and analysed using the dedicated deep learning-based
vulnerability prediction models, in order to compute their vulnerability score, i.e.,
their likelihood to contain a vulnerability. When the analysis is complete the screen
is rendered in order to present the results in an intuitive way, as show in Figure 31.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 57

 Confidentiality: Public

Figure 31: The workflow updated with the results of Vulnerability Assessment

As can be seen by Figure 31, the results are presented by changing the colours of the
developed workflow. Different shades of red are used to denote how likely it is for a
specific task to contain a vulnerability. The redder the colour, the more likely it is for
the corresponding task to be vulnerable. Hence, this view is very useful for the
developers as it allows them to pinpoint security hotspots, i.e., potentially vulnerable
tasks. Based on this information, the developers can revisit their decisions. For
instance, in the given example Task 3 was found to be very likely to contain a
vulnerability. The developers can then decide either to use another service that is
more secure (based on our analysis), or write a service from scratch. As a third
option, the developers could revisit the overall workflow, and come up with an
alternative one that does not requires this task.

Finally, the greyed-out boxes in Figure 31 denote tasks that they were not analysed,
because their source code was not accessible (for example, Task 2 in Figure 31). The
user will be provided with the option to manually supply the code for this task and
repeat the analysis for this task. However, if the task is based on a commercial (i.e.,
closed-source) service, the analysis cannot be executed. The user needs to be
informed in this case, in order to make the best decision. The developer can either
accept the service, because it may be created by a trusted third-party organization
with available security certificates (hence the risk of not analysing it is low), or find a
suitable service for a given task (similarly to the case described in Section 4.2.2
concerning the failure of the Service Discovery component). The user can either
decide to implement this task from scratch (to better control its code, and, in turn, its

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 58

 Confidentiality: Public

security) or re-design the overall workflow using an alternative that does not need
this task.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 59

 Confidentiality: Public

4.4 Runtime Monitoring and Verification
SmartCLIDE provides the capability for non-programmers to construct applications
and new services using smart automation. Quality assurance of the constructed
applications involves both construction-time and run-time assurance. Assurance of
the correctness of the construction of the application is addressed by the manner of
construction. Assurance of the runtime behaviour is addressed by validating that the
application exhibits behaviour consistent with the user’s specification, and that the
assumptions made about the runtime environment, made at the time of the design of
the construction approach, and thus built into the construction of the application,
continue to be valid as the application executes.

The intended behaviour of the application may involve both functional and non-
functional properties. Key characteristics of the application, such as security, safety,
privacy, resilience and reliability are general categories of runtime quality attributes
that may be required.

Validity of environmental assumptions involves necessary conditions under which
the construction and execution of the application are expected to be correct. The
assumptions made by individual components or services from which an application is
composed, and the consequent assumptions of their composition, need to be
established and maintained during the execution of the application.

These concerns occur in statically constructed applications as well as those that are
dynamically constructed and executed on demand. However, in the dynamic case
some runtime quality attributes arise that do not exist in the static case. For example,
in the dynamic case the identification of the components or services to be composed,
the correctness of the service composition, and testing of the composition arise
during construction runtime rather than during a conventional design,
implementation, test and deployment cycle.

When an application is dynamically composed for a specific purpose, known
properties of the component services can be used to find composition solutions that
yield a final property that suits the purpose. However, because the dynamic case does
not afford the same opportunity to apply the conventional disciplines for assurance
during design and implementation, or for conventional testing, it is prudent to
supplement the measures that can be done during construction of dynamically
composed applications with automated runtime monitoring to provide ongoing
collection of evidence supporting the claim of correctness of the application. The
defining property of the application as well as the assumptions should continue to
hold during runtime.

The Runtime Monitoring and Verification (RMV) framework is intended to provide
the capability for constructed applications to be automatically monitored at runtime
for their validity of their properties and their environmental assumptions. If the
SmartCLIDE services creation, services discovery, services composition, and
services deployment functionalities are thought of as “programming for non-
programmers” then the runtime monitoring and verification features provide
integrated “runtime quality assurance for non-programmers”.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 60

 Confidentiality: Public

It is not yet fully known the extent to which this objective can be completely
automated. It depends to a great extent upon the manner in which the desired
application functionality is specified, the detail of the behavioural specification of the
microservices used to compose service-oriented applications, and the methods for
composing the application. If the service composition reasoning and the service
composition details are available externally, and if the properties and assumptions of
the component services are sufficiently formal, then properties and assumptions of
the composition can be inferred and corresponding monitors can be generated. In this
case a sufficient library of monitoring components would be created and their
composition automated in concert with composition of the application to create the
corresponding monitoring application which can be deployed with and run beside
with the application.

Though there is some technical risk of falling short of the most ambitious objectives
due to these uncertainties, the resulting monitoring framework will nonetheless
provide several useful benefits:

§ The Runtime monitoring and verification components are used by the Context
Handling system to subscribe to get monitored data about runtime values and
events that it needs to accomplish its purpose.

§ Developers using the service composition capabilities of SmartCLIDE will be
able to develop monitoring applications using the monitoring and sensor
services that can detect sequences of events specified by patterns specified by
the monitoring application. These may be used to detect exceptional conditions
or may be integrated into the design of the application to enable a response to
monitored conditions external to the application.

§ The security component can construct a monitoring application to monitor
security relevant events that other application services are designed to
generate. These may be stored in the Log as an audit trail for post-execution
forensic investigations.

§ Other subsystems can construct monitoring applications to assist with
instrumentation, testing, or debugging of applications or the SmartCLIDE
platform itself.

The RMV provides a flexible and configurable framework (see Figure 32) with
programmable interfaces to permit the construction of a monitoring application,
using standard or bespoke monitoring components and sensors, in parallel with the
construction of a service-oriented application. The framework will also provide for
the capture and retention of data gathered by sensors and monitoring applications in a
log according to configurable criteria.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 61

 Confidentiality: Public

Figure 32: Application and Monitor Creation and Deployment

The technical elements of the approach include:

§ A library of monitoring logic components for constructing monitoring
applications.

§ A library of sensor types that can be instantiated and installed within composed
SOA applications and infrastructure components to gather the data/events
needed by monitoring applications.

§ A mechanism for composing monitoring applications in parallel with the SOA
application.

§ An SOA execution framework for executing SOA applications, monitoring
applications, the monitor framework and the agents.

§ A notification mechanism that can transmit alerts to registered participants
when monitored events meet a specified condition.

§ A method and mechanism for selecting monitoring components and sensors
and constructing appropriate monitoring applications according to the
construction of a corresponding SOA application.

§ A mechanism for the collection and persistent storage of the Log of monitored
data and notifications.

§ A mechanism for the configuration of log collection and storage, including
where the Log is to be stored, how large logs should be archived, etc.

The ambitious objective of automated determination of conditions to be monitored,
and automated construction of corresponding monitors, will attempt to leverage the
automated application programming infrastructure for automated monitor
construction.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 62

 Confidentiality: Public

The starting point for defining the concept of the “Runtime Monitoring and
Verification” component is the requirements analysis document:

SmartCLIDE “Runtime Monitoring and Verification” component shall be able
to support:

§ A flexible and configurable framework for the construction and deployment of
diverse monitoring applications.

§ Programmable responses according to the findings of the monitoring
applications, including notifications to the application execution framework
and activation of predefined responses.

§ Programmer-directed explicit construction of customised monitoring
applications.

§ Cooperative monitoring, that is, passive monitors that are called by the
application and/or the execution framework to report various predefined
conditions.

SmartCLIDE “Runtime Monitoring and Verification” component should be
able to support:

§ Capture and storage and/or forwarding, according to configurable filters, of
monitoring data to other components.

SmartCLIDE “Runtime Monitoring and Verification” component may be able
to:

§ Leverage the SmartCLIDE application service composition to automatically
construct monitoring applications to run in tandem with the composed
applications and to detect in the applications’ behaviour violations of the
applications’ specifications.

4.4.1 TRL 4 Lab Validations (Minimum Viable Product)
The Runtime Monitoring and Verification (RMV) component comprises at a
minimum:

§ a library of monitoring primitives and virtual sensors

§ a runtime monitoring framework that arranges for communication among
monitoring applications and actions/logging/notifications that are triggered by
conditions detected by a monitoring application

§ a log agent that collects events and log data from all monitored applications
and directs it to a log according to directives in a configuration file

§ a notification agent that upon certain detected conditions notifies the SOA
execution framework of exceptional conditions, and may notify other
processes that have subscribed to select notifications

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 63

 Confidentiality: Public

The RMV component provides APIs to its services including:

§ reporting of events by SOA applications or monitoring applications

§ an event pattern matching mechanism (potentially spanning a range of pattern
classes, from simple matching of event properties to matching of event
sequences to temporal logic formulas)

§ logging to a runtime log which is backed to persistent storage

§ management of persistent logs

§ subscription to notification of specified events or event patterns collected
from monitoring applications

§ subscription to forwarding of specified kinds of monitored data

The Context Handling componentis expected to use the RMV Framework to
subscribe to monitored data and notifications to gather the runtime information it
needs for its purpose of constructing a model of the current context, or to construct
specialized monitoring applications, as described below, to work in conjunction with
special applications.

The RMV may also provide:

§ a library of monitor components and virtual sensors

§ a monitoring application smart composition procedure, operating in concert
with the SOA application smart composition process to construct a monitor
for the essential properties, representing the correct operation or necessary
conditions for the correct operation of the SOA application

The RMV component does not have an explicit user interface, except in the special
case of the programmer-directed explicit construction of customised monitoring
applications, or as an explicit component of an application. In this special case, the
UI to RMV is the very same interface provided for assisted programming, where in
this case the application being constructed is a monitoring application.

When the RMV is employed as a runtime quality assurance measure on
applications/services composed from other available, and adequately specified,
components/services it operates silently behind the scenes silently unless the
composed application deviates from its expected behaviour. The monitoring
application, constructed from a library of component monitoring services and sensors
by the assisted service composition component, operating in concert with the
monitoring framework, is a detector for violations in the event trace of the
application for which it is constructed to operate in tandem by the assisted
programming service. In this case, the monitoring framework notifies the application
execution framework of the violation so that it may take appropriate action. Such
actions may include termination or restart of the errant application as defined in
advance by the assisted service composition component.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 64

 Confidentiality: Public

When the smart SOA application composition component creates an application, it is
presumed to receive or construct a specification of the needed behaviour of the
application to be composed and to use specifications of available primitive services
to construct the application. The a priori component properties and their
environmental assumptions, as well as the expected properties of the composed
application, provide opportunities for runtime monitoring to assure that assumptions
continue to hold and the application continues to deliver expected behaviour.

The RMV requires input from the service composition process to determine what
properties of the SOA application being constructed should be monitored at runtime
and what values/events in the application represent the information needed to verify
the properties. The RMV in response provides “virtual sensors” for identified
application events for installation into the composed application. These sensors
comprise calls into the Monitoring Application to register the occurrence of related
events.

The RMV requires input from the running SOA application as events. These events
are consumed by the Monitoring Application specifically constructed for the specific
SOA application. The event definitions are selected to enable detection of the
properties of the application to be verified at runtime. There may be properties that
are common to multiple applications. That is, some properties may be instantiated
from a library of properties.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 65

 Confidentiality: Public

4.5 Run-time Simulation & Monitoring / Visualisation
The “Run-time Simulation & Monitoring / Visualization” component will provide a
front-end for the monitoring solutions in SmartCLIDE. This interface will allow the
developer to visualize the status of deployed services through visual and text-
based elements inside a Run-time Monitoring Console, which may be integrated
inside the SmartCLIDE UI. To do so, the “Run-time Simulation & Monitoring /
Visualization” component will exploit the “Activity Monitoring” module inside the
“Backend Services” component, which will allow the console to extract information
about running container and services, and to connect to them.

The following diagram (see Figure 33) represents a use case scenario of the “Run-
time Simulation & Monitoring / Visualization” component, where the developer
wants to monitor a certain container:

Figure 33: Use case scenario for monitoring a certain container

In the previous diagram, the steps are:

1. The developer selects the container he wants to monitor by using the “Run-time
Monitoring and Simulation / Visualization” module in the SmartCLIDE UI (i.e.,
see mocks up in Section 4.5.1).

2. The “Run-time Monitoring and Simulation / Visualization” component subscribes
to the “Run-time Monitoring & Verification” component by using a RESTful
API.

3. The “Run-time Monitoring & Verification” component reports monitoring data
from that container.

4. The “Run-time Monitoring and Simulation / Visualization” component
represents received run-time monitoring data using both, visual and text-based
techniques.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 66

 Confidentiality: Public

4.5.1 TRL 4 Lab Validations (Minimum Viable Product)
After analysing the state of the art and initial requirements, we present the initial
mock ups of the ‘Run-time Simulation & Monitoring / Visualization” component. Its
main element will be the monitoring console, which will allow the developer to
monitor and track the state of services deployed in SmartCLIDE. To do so, its core
menu will present three different horizontal tabs: overview, terminal and settings.

The Overview tab (see Figure 34) will allow the developer to visually see the status
of some indicators, which will depend on the chosen target (i.e., selected container).
The developer will be able to choose which service (e.g., container) to monitor
through a vertical tab selector, further enabling the developer to rapidly switch
between them. In the mock up below, we show how some performance indicators
could be visually showed, but its content may depend on what backend services
allow to track.

Figure 34: Run-time Simulation & Monitoring – Overview

The second tab is the Terminal itself (see Figure 35), and will allow the developer to
start terminals to any application deployed in SmartCLIDE. This will be useful to
watch logs, check deeper performance indicators through server-side CLI
applications (e.g., top), or to make runtime changes in configuration files.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 67

 Confidentiality: Public

Figure 35: Run-time Simulation & Monitoring – Terminal

The last tab is the Settings one (see Figure 36), and will allow the developer to
customize the settings of the console. The content in this tab will be explored during
the execution of the project, and may contain both visual or functional options, such
as customizing font style and size for the Command Line Interface.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 68

 Confidentiality: Public

Figure 36: Run-time Simulation & Monitoring - Settings

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 69

 Confidentiality: Public

4.6 Deep Learning Engine
In this section, the approach to the Deep Learning Engine (DLE) from a conceptual
perspective is described. The DLE is the base for code classification, generation of
code templates, services classification and abstraction management. Besides, it has to
support predictive models’ generation and presumably different Smart Assistant
recommendation fields, such as code autocompletion and software lifecycle
suggestions. Smart suggestions’ utility will depend on the results shown by AI
algorithms at enhancing the different support fields (e.g. development, testing,
deployment, etc.) versus existing IDE plugins. Consequently, a single component
which supports several AI algorithms/methodologies has to be built. At a later time,
iterative approaches on each required feature will conform their first stable release at
the early prototype. Considering the wide range of applications, the DLE service will
potentially have to be split to maintain functional atomicity.

Different approaches will be taken according to the final destination of the
predictions. The DLE will be connected to other components using a REST API,
providing results in a flexible, homogeneous way. Further visualizations on the DLE
data and models can be later on considered for implementation to deliver its outputs.
A breakdown on the functionalities is as follows:

§ Code templates generation. This functionality will explore the generation of
quality code templates for atomic functionalities, by means of various AI
techniques. The models will be trained with code selected for specific
functionalities.

§ BPMN flow suggestions. This functionality will support the suggestion of
suitable nodes at the creation of BPMN flows, relying on predictive models
trained with successful existent BPMN templates.

§ Service classification. Connected with the Service Discovery Component,
service classification functionality will retrieve the data gathered from pre-
defined sources and put them into pre-trained models to extract classifications,
based on the existent services' features. These features have to be determined
based on the availability of existing ontologies or descriptors and the quality of
the information at the required fields.

§ Generation of predictive models. An assistant embedded into the IDE interface
will provide the possibility of creating standalone containerised reusable
models with an API, given a data source. This assistant will lead through data
transformation to model attainment, pre-visualising the data, suggesting
algorithms based on the data type, slicing the set automatically, and giving
metrics to test the obtained model.

§ Support to the Smart Assistant. Features provided by the Smart Assistant are
prone to be supported by the DLE. It will be necessary to state if they will
remain in the IDE interface via existing plugins, or if they will be fully
supported by the DLE and subsequently called by the Smart Assistant. The
Smart Assistant will deliver the results based on the development context.
Suggestions on the next suitable component (BPMN) or code autocompletion
will be supported by AI algorithms, while some other lifecycle
recommendations (e.g. syntax, best practices, security) are still to be proven.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 70

 Confidentiality: Public

4.6.1 TRL 4 Lab Validations (Minimum Viable Product)
As mentioned, the DLE aims to support several AI operations. These essential
functionalities will be used to conform an AI engine, and address the rest of the DLE
attributions.

The easy generation of AI models will be the first experiment to develop. These
models can be composed of known algorithms and techniques (e.g. neural networks,
classifiers, regressors, etc.) and by methods designed and formulated specifically for
each case. Once prepared, the efforts of the other experiments will focus on applying
these models to the available data, given the demanded functionalities.

Figure 37: Deep Learning Engine - Overview

The system will bring in data from different sources, both from static files and real-
time sources. It has to be able to accept data for every future functionality, from
sensors to context abstractions. Once the data are retrieved, they will be pre-
processed to detect the type and format of each field. Data will be pre-visualised to
detect outliers, offer filtering and to create new computed fields.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 71

 Confidentiality: Public

Figure 38: Deep Learning Engine - Import Data

Figure 39: Deep Learning Engine - Import Data Details

Once the data is prepared in the form of a source, the target variable will be defined
and the algorithm will be selected by the assistant. The dataset will have to be split
into training and testing, where the default values will be manually controlled. This
whole process will be either driven in a fast-forward way (automatic) or manually,
constraining the generation parameters.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 72

 Confidentiality: Public

Figure 40: Deep Learning Engine - Model Creation

Figure 41: Deep Learning Engine - Model Creation - Target Features

Figure 42: Deep Learning Engine - Model Creation - Algorithm and Training

After the model is trained, it will be stored and subsequently exposed in a small
playground, to try it by choosing the input values. The user will be able to measure

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 73

 Confidentiality: Public

the model performance by checking its metrics and review the work of the model
over new sets of data.

Figure 43: Deep Learning Engine - Data Visualization - Model selection

Figure 44: Deep Learning Engine - Data Visualization - Model metrics

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 74

 Confidentiality: Public

Figure 45: Deep Learning Engine - Data Visualization - Model visualization

Visualisation features can potentially be added to extract knowledge in a more
efficient way by using chart libraries. As a final step, the models will be
containerised with a REST API for their deployment.

Regarding other mentioned functionalities, some experiments can be performed on
top of the formerly described AI backend.

§ Code templates generation. Programming by Example paradigm projects, will
be researched in terms of code generation approaches for different languages,
preferably Java. The generation of code templates using AI methods, as well as
other existing project conceptualisations will be explored. Once successful
results are achieved in a reference language and depending on the used
method, more languages will be added. Here it will be interesting to observe
the usage of DSLs LSPs and GLSPs to provide easier language interactions
and generalizations.

§ BPMN flow suggestions. Previously generated BPMN flows will be analysed
to extract common features and create a model to predict which elements are
proved to be next to the others. This, combined with the Context Monitoring
information, will allow the Smart Assistant to give accurate suggestions on
what components are to be expected in a flow design based on the intentions of
the user.

§ Service classification. The combination of several AI techniques or semantic
approaches will be used to extract clusters from existing data in bare services
scraped from public web links. This will lead to an understanding of which
techniques can be used to classify services depending on the final desired
features.

§ Support to the Smart Assistant. Generally speaking, communications with the
Context Monitoring will have to be defined and settled and examine its outputs
(abstractions) to determine which algorithms can be applied to predict user
behaviours.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 75

 Confidentiality: Public

- Suggestions on the next feasible component (BPMN).

- Code autocompletion. To this end, the strategy will be to examine
existing autocompletion plugins and try to determine to what extent AI
techniques are capable of improving their performance by cache
managing or similar techniques.

- Syntax highlighting. In this particular topic, linters will be explored to
determine the most suitable options and how they can be enhanced or
implemented within the IDE.

§ Best practices, security. Combined with Context Monitoring analysis, some
predefined rules related to software development and their application (correct
timing and means of interaction with the user) can be explored to enhance the
experience of the user.

§ Automatic tests generation based on Gherkin language. NLP techniques plus
code generation via ML and DL algorithms will be explored along with
automatic test generation tools to leverage their functioning.

Concerning context identification, a fluid and early connection between the Context
Monitor and the DLE will leverage the learning from Context abstractions and their
possibilities.

The scope of AI research achievements related to the functionalities above, and
therefore their degree of adequacy, will be weighted on the go, as use cases specific
requirements are prioritised (practical approach) and subsequently generalised as far
as possible. The results will strongly depend on the training data and the suitability of
the used methods.

For all the presented functionalities, integration with the Smart Assistant will be
provided when required via REST API.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 76

 Confidentiality: Public

4.7 Context Handling
Within the SmartCLIDE project the Context Handling will be used as a baseline to
gather and represent knowledge within the full-stack development lifecycle in the
SmartCLIDE IDE. It will be based on a context model, which will be a set of
concepts and their relations which describe the stages, entities, attributes and
stakeholders within the collaboration of a full-stack DevOps development context.
Figure 46 shows the conceptual architecture for the context handling services, which
consist of the three services “Context Monitor”, “Context Extractor” and “Context
Provider”. The conceptual approach for each of these services will be explained in
the following sub-sections.

Figure 46: Conceptual Context Handling Architecture

4.7.1 Context Monitor
The objective of the Context Monitor service is to receive raw data and provide
aggregated context data. It is a generic solution for monitoring data sources, which is
customisable for different communication protocols and data structures. It enables
data pre-processing or data aggregation. Figure 47 shows the conceptual architecture
of the Context Monitor service.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 77

 Confidentiality: Public

Figure 47: Conceptual Context Monitor Architecture

To achieve its tasks, the Context Monitor service utilizes monitoring of the Runtime
Monitoring and Verification Service. It is therefore able to standardise and correlate
data from distinct systems (e.g. map actions from file systems and Web/REST-
Services), which later serve as a basis for identification and extraction of situations.

The main featureof the Context Monitor is the modular monitoring process, used for
all monitoring features with an extendible and configurable standardized process. It
is the process description for all features how to attach and monitor data from
Runtime Monitoring and Verification, as well as how to process the captured
information.

4.7.1.1 Monitor
The Monitor module performs a permanent loop of monitoring for changes or
creation of resources, which indicated a change in context.

Table 1: Monitoring of systems/sensors

Monitoring of systems/sensors

Description Monitoring of Runtime Monitoring and Verification Service, checking for
usage, handing content information to subsequent processes.

Trigger Event The process is a monitoring service, which performs a permanent loop that
checks for changes (or creation) of resources indicated by a change in the
content.

Parameters The parameters to the analyser are the parsed content and Meta-Data from the
Parser.

Process/Stages The process performed is as follows:
• monitoring is started with the context configuration parameters

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 78

 Confidentiality: Public

Monitoring of systems/sensors
• it starts monitoring the observed Runtime Monitoring and

Verification Service
• the information about its origin and all gathered data are given to the

parser processes

Input/Output
Data/Interfaces

Monitor provides (pre-processed) context data coming from monitored
data sources.

4.7.1.2 Parser
The Parser module is connected to the monitoring input and the backend process of
analysing and aligning the information. It is important to state that the parsing
process itself does not analyse the data but offers access to it and allows as a
connected upstream of the Analyser to parse and therefore sort the information in a
specific manner. For example, plain text files may be accessible by the whole system
and therefore the Analyser without the need of a Parser, but the Parser may utilize a
schema or other utilities to arrange the information in Content and Meta-Data in a
specific way. This will further be the foundation for the Analyser process which
expects only this information and analyses on that without specific rearrangement of
the resource. Another example may be the access of an external Web-Service where
the Parsers controls and manages calling the Web-Service and prepares the data
received from the service to hand it over to the Analyser.

Table 2: Parsing of monitoring data

Parsing of monitoring data

Description The parser offers access to data by sorting the information in a specific manner,
parsing data coming from the monitoring system process. It selects based on
the content and resource type the specific parser from a set of type specific
computations and parses the Content and the special type Meta-Data and hands
the data to the Analyser.

Trigger Event Parsing process is triggered by the monitoring process. If the monitoring does
not identify a change in the monitored resource, it is not triggered.

Parameters The parameter handed over to the parser is the data monitored, containing
environmental properties like the location of the resource to be parsed.

Process/Stages The process of the Parser is as follows:
• the parser gets the monitored data
• the data is checked for their type
• the appropriate specific parser according to the configuration

is selected
• the parser prepares the monitored data and possible meta-data
• the data is handed to the appropriate Analyser

Input/Output
Data/Interfaces

The Parser hands a set of content and Meta-Data to the according Analyser.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 79

 Confidentiality: Public

4.7.1.3 Analyser
The module for transferring the “raw” monitoring data into the standardized
monitoring data is the Analyser. This function builds the monitored and parsed data
into an RDF-based XMP representation of the recently monitored status.

The correlated Monitoring Data representing the last monitored status is needed to be
stored in the context monitoring data repository as comparable source for other
components.

As all data of all Context Monitor service modules will be based on the POJO-based
principles, the serialization of the information provided from the Parser will be easily
converted through self-describing classes and functions. The Analyser therefore
invokes the handed over data and comprehends all single information in a single
representation, which will be stored in the context monitoring data repository. The
constructed data is based on a RDF-based XMP description.

Table 3: Analysing of monitoring data

Analysing of monitoring data

Description Constructing a RDF-based XMP monitoring data based on the data
handed over.

Trigger Event The Analyser is invoked by the Parser.
Parameters The parameter to the Analyser is the parsed content and Meta-Data from

the Parser

Process/Stages The process of the Analyser is as follows:
• receives instances of parsed content and meta data
• constructs the Standardised Monitoring Data based on analysed data

Input/Output
Data/Interfaces

The outcome of this function is a string-representation of a RDF-based
XMP file, comprehending one standardized Context Monitoring Data,
which is stored in the Context Monitoring Data Repository.

4.7.2 Context Extractor
The objective of the Context Extractor service is to identify the context of
development processes or specified systems and to provide it for further use within
the SmartCLIDE solution to other modules or external systems. Figure 48 shows the
conceptual architecture for the Context Extractor service.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 80

 Confidentiality: Public

Figure 48: Conceptual Context Extractor architecture

The following sections describe the approach of the modules composed within the
Context Extractor service. The service uses a context model for an integrated
representation of the observed environment (e.g. development processes or users).

As shown in the figure above, the Context Extractor service identifies contexts based
on context monitoring data, provided by the Context Monitor service (see Section
4.7.1), enhances it through different types of reasoning techniques (context
reasoning), and provides the refined contexts for further exploitation to SmartCLIDE
modules (or external systems).

The Context Extractor service is based on the services developed within the projects
U-Qasar and SAFIRE. The service will be extended to address the specific needs of
the generic SmartCLIDE solution, as well as the particularities of the four business
cases. The collection of input data will be done by the Context Monitor service (see
Section 4.7.1), and the Context Extractor service will analyse data in order to specify
the current context and identify the parameters of the development process
environment that could affect its performance. The identification of the respective
context is being done based on the context models, which define each time what
information is relevant to the observed context. The identified context information is
being stored in the context repository as annotation to the content that is used in the
observed context.

The Context Extractor service is composed of the following parts:

§ The context model, tailored either to cover the generic needs of the
SmartCLIDE solution (generic context model) or to support the specific needs
of the business cases or companies (BC-specific and company-specific context
model). The model is defined as high-level-structured representations. All
methods included in the Context Extractor service have as basis for their
functionality, this input context model.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 81

 Confidentiality: Public

§ The context identification module , which analyses the monitoring data handed
over by the Context Monitor service (see Section 4.7.1) and extracts a
description of a context.

§ The context reasoning module that reasons on the context provided by the
context identification module and generates more precise context, which
cannot be directly identified from the context identification module.

The parts are described in more detail in the following sections.

4.7.2.1 Context Identification
The context identification module analyses the monitoring data handed over by the
Context Monitor service, and extracts knowledge such as information from runtime
monitoring and verification services, and information on the activities performed and
the environment characteristics occurring during the current on-going context.

The context identification is the first module to be executed in the context extraction
process. It is triggered by the Context Monitor service upon receiving the monitoring
data or on a certain period according to the customisation made. The data are
analysed and mapped onto the given ontology by the context identification part to
recognise as much as possible detailed contextual information. The identified initial
context itself is sent to the context reasoning module for further processing and
refinement.

Table 4: Context Identification

Context Identification
Description Analyses the context monitoring data provided by the Context Monitor service

to identify contexts.

Trigger Event The Context Monitor service provides context monitoring data or is done on a
periodic basis based on the component configuration.

Parameters The context monitoring data from the Context Monitor service in XMP/RDF
format.

Process/Stages The process works as follows:
• Interpret the context monitoring data as RDF model.
• Create an initial context instance to represent the current situation ,

since it may not be determined yet.
• Analyse the context monitoring data RDF model to retrieve finer

grained contexts. Add the identified context elements to the initial
context instance.

Input/Output
Data/Interfaces

An RDF model representing the identified context (an initial context instance
and other relevant contexts and contextual elements attached to it).

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 82

 Confidentiality: Public

4.7.2.2 Context Reasoning
This part reasons on the context provided by the context identification module , and
generates more accurate contexts, which cannot be directly identified during the
process in the context identification module.

Three types of context reasoning will be provided by the context reasoning module,
namely ontological context reasoning, rule-based context reasoning and statistical
context reasoning. They are performed one after the other, to refine the identified
context.

4.7.2.2.1 Ontological Context Reasoning
Table 5) explores the semantics of the OWL ontology language and the definitions in
the SmartCLIDE context model, to infer deductive results out of the identified
knowledge context.

At the ontological level, deductive reasoning is based on the semantics of the OWL
ontology language and the definitions in the SmartCLIDE context model. By
performing ontological context reasoning, implicit information can be inferred out of
the explicit information.

As SmartCLIDE uses RDF/OWL to model the contexts, deductive reasoning, such as
transitive, or sub-class hierarchy reasoning is supported. After reasoning, each
instance (identified with its URI) of the context element is clearly positioned in the
context model. This is called “sub-sumption” and serves as basis for the next step
rule-based context reasoning, as it requires all conditions in a rule to be explicitly
stated.

Table 5: Ontological Context Reasoning

Ontological Context Reasoning

Description Context reasoning based on the semantics of the OWL ontology language
and the definitions in the SmartCLIDE context model.

Trigger Event Called by context identification.

Parameters The identified knowledge contexts in RDF format.
The SmartCLIDE context model definition in RDF/OWL format.

Process/Stages Use the OWL ontology language rules to infer implicit RDF statements
from the explicit statements in the SmartCLIDE context model and the
identified context elements (i.e. “subsumption” as a first step).

Input/Output
Data/Interfaces

Refined identified context.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 83

 Confidentiality: Public

4.7.2.2.2 Rule-Based Context Reasoning
Rule-Based context reasoning (Table 6) applies user defined domain specific rules to
infer new contextual knowledge from the existing contextual knowledge.

Rule-Based context reasoning uses the same deductive techniques as in the
ontological context reasoning, but with application-specific rules. During
configuration phase, domain specific rules can be defined to help the Context
Extractor service generate more useful and finer grained contextual knowledge.

The rules will be defined in rule files and can be updated any time. The Jena rule
engine will be used to implement the rule-based context reasoning, so the rules will
be defined in Jena rule syntax20.

Table 6: Rule-Based Context Reasoning

Rule-Based Context Reasoning

Description Context reasoning based on the user defined domain specific rules.

Trigger Event Called by ontological context reasoning.

Parameters The refined knowledge contexts after ontological context reasoning.
The domain specific rules defined by the user.

Process/Stages Use the user-defined rules to infer more accurate contexts from the available
identified, ontologically refined context.

Input/Output
Data/Interfaces

Refined identified and reasoned context.

4.7.2.2.3 Statistical Context Reasoning
The purpose of statistical context reasoning (Table 7) is to determine the current
context based on the available context information so far, and historical contexts.

Statistical context reasoning does not rely on strict logical rules, but instead tries to
correlate information into possible relations, as suggested by the empirical data. The
Context Extractor uses statistical context reasoning to rank on-going contexts
according to the current available knowledge context, so as to determine the activity
of the current systems and the corresponding context.

This reasoning is performed as the final step, as its purpose is to determine a current
activity or processing step based on currently available context information, which
can only be provided after the previous ontological context reasoning and rule-based
context reasoning have been performed. Normally, a system might have several on-
going activities, or processing steps, under certain contexts. Which is the currently
active one (defined as the current context), needs to be decided. The statistical
context reasoning compares the similarities between the contexts after the rule-based

20 https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/reasoner/rulesys/Rule.html

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 84

 Confidentiality: Public

context reasoning (which already contains an initial context created in the context
identification) with the current on-going contexts and ranks them.

The context similarity measure computes the similarity value between two given
contexts, which plays a very important role in the context determination. It supports
the statistical context reasoning function and context-aware adaptations and
selections. Basically, it compares two given contexts, by using the context hierarchy
tree defined in the context model, to tell how similar they are. The actual output of
the context similarity measure is a value between 0 and 1.

If the highest similarity value is above a configurable threshold (e.g. 0.95), the
according on-going context is selected as the current one. Otherwise the initial
context itself is used as the current one, which means a new knowledge-based
context is created. This is one of the ways how contexts are populated in the Context
Extractor service.

Table 7: Statistical Context Reasoning

Statistical Context Reasoning

Description Determines the most probable current context based on available knowledge
context.

Trigger Event Called by rule-based context reasoning.

Parameters The refined contexts after rule-based context reasoning.
A list of on-going contexts with their related historical contexts from the
context repository.

Process/Stages The process works as follows:
• Call context similarity measure to compute the similarity between the

initial context and the on-going contexts.
• Sort the on-going contexts according to their similarity values.
• If the similarity value of the first on-going context is above a given

threshold, select it as the current context.
• Otherwise use the initial context created in context identification as the

current context.
Input/Output
Data/Interfaces

A determined current context.

4.7.3 Context Provider
The purpose of the Context Provider service is to provide the current knowledge-
based context and a list of other similar knowledge-based contexts to other
modules/services/components.

The Context Provider service is responsible for fulfilling the following two tasks:

§ to perform a context similarity check: the context similarity measure compares
the current on-going contexts with previously acquired historical contexts in

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 85

 Confidentiality: Public

the repository and provides the results to any other SmartCLIDE service (e.g.
the DLE).

§ to wrap the results into an RDF-based file format: this part wraps the extracted
context to an RDF model, which is a more flexible format and readable by
other modules/services/components, which can further use the SmartCLIDE
context.

4.7.4 TRL 4 Lab Validations (Minimum Viable Product)
In order to demonstrate the readiness of the Context Handling services for TRL 4, a
laboratory prototype was developed and made available on the project's Github
repository21. The laboratory prototype includes three parts, namely the context
model, the Context Monitor service, and the Context Extractor service.

To define what contextual information is important and will be taken into
consideration for the context extraction, a context model was created. The context
model was created using an ontology modelling tool (Protégé22) and is saved
structured in Resource Description Framework (RDF) format, as a Web Ontology
Language .owl file. For this prototype, the model includes only some limited
information defining the basic context framework of software services and
development processes. The context model in this stage does not include advanced
relations between the included concepts. The following figure presents the context
model used for the laboratory validations.

Figure 49: Context Model for Laboratory Validation

As seen above, the model for the lab validation defines that the important
information for the Contextual Handling of SmartCLIDE includes for example data
for the activities performed, information about the environment (e.g. services used),
which should be monitored in order to identify the current context of operation. More

21 https://github.com/eclipse-researchlabs/smartclide/tree/master/context
22 https://protege.stanford.edu/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 86

 Confidentiality: Public

specifically, the context model configures the Context Monitor and Context Extractor
service to monitor and identify the related information from the environment of
operation. The context model is used as an input resource to the Context Extractor
service, to identify and extract the related information from the monitored data.

The Context Handling does not have an user interface. It will use the RMV
component as input and will provide its output to the DLE component.

The parsing of resources begins after the looping monitoring process receives a
notification about new available data from the RMV. For the laboratory prototype the
RMV data was simulated by providing the monitoring process information from a
logfile.

The module for transferring the “raw” monitoring data into the standardized
monitoring data is the Analyser. This function builds the monitored and parsed data
into an RDF-based XMP representation of the recently monitored device’s status.
The Analyser invokes the handed over data and comprehends all single information
in a single representation, which is stored in the monitoring repository. The
constructed data is based on an RDF-based XMP description.

The monitored data, in the form of RDF statements is given as an input to the context
identification module of the Context Extractor service. Using SPARQL queries the
identification module maps the monitored data to the context model (ontology) given
as configuration input.

The result of the context identification is an RDF structure which describes all the
identified context according to the provided context model.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 87

 Confidentiality: Public

4.8 User Interface / Workbench
In this section are presented approaches to address the main requirements and
challenges for the development of SmartCLIDE User Interface and how the
workbench will the integrate the diverse tools provided by the several SmartCLIDE
components in a seamless experience for the SmartCLIDE user.

The following requirements were identified by SmartCLIDE use case users as
characteristics that the user interface shall provide:

§ P40 - SmartCLIDE environment is easy to use by business stakeholders with
limited programming knowledge;

§ P41 - SmartCLIDE utilises a drawing canvas for "drag & drop" programming
by arranging functional and decision blocks on a canvas rather than writing
complex source code;

§ P42 - SmartCLIDE provides live low-code programming capabilities for more
complex scenarios;

§
§ P46 - SmartCLIDE allows a BPMN editor to run in a web browser;
§ P48 - SmartCLIDE provides support for a Docker Service toolbar so the

process developer could also use an external service;
§ P49 - SmartCLIDE interface provides for the configuration of individual

services;
§ P51 - SmartCLIDE supports customisation of graphical colour scheme and

generic graphical elements;
§ P52 - SmartCLIDE is able to visualise existing services;

§ P53 - SmartCLIDE provides a visualisation of services and dataflows;
§ P54 - SmartCLIDE interface supports the grouping of services (e.g. per

category);
§ P55 - SmartCLIDE includes a built-in documentation capability.

The following requirements were identified by SmartCLIDE use case users as
characteristics that the user interface should provide:

§ P43 - SHOULD - SmartCLIDE provides support for integrating an online
coding IDE for code formatting and syntax error highlighting and integration
with external services;

§ P44 - SmartCLIDE online coding IDE provides auto-complete functionality;

§ P45 - A BPMN template toolbar can be included in the SmartCLIDE UI;
§ P47 - SmartCLIDE provides the ability to create re-usable process templates

(e.g. BPMN);
§ P50 - SmartCLIDE provides facilities for searching for services and

abstractions;

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 88

 Confidentiality: Public

In order to provide most of those requirements, the workbench must use and expose
to the user several services provide by the SmartCLIDE components. Those services
aim at supportting developers during the different stages of the product development
lifecycle. Therefore, the workbench must organise the provided services in a way
that enables the SmartCLIDE user to quickly identify, which tool will provide the
most benefits at which stage of the service development lifecycle.

At the time of writing of this deliverable, the best candidate to be the basis for of
SmartCLIDE IDE frontend is Eclipse Theia23. This IDE is highly customizable and
extensible, either on the graphical aspect of the environment and on the modification
and addition of functionalities and behaviours. A possible approach for integrating
the SmartCLIDE tools is the development of SmartCLIDE plugin that would provide
most of SmartCLIDE functionalities to the user.

One example of such case might be the Smart Assistant. This component aims to
support the user during different stages of the lifecycle. While in some cases the
Smart Assistant must be integrated along with other SmartCLIDE tools to support
their usage and interaction with the tools, in other cases like the code
autocompletion, the Smart Assistant needs to be running on the background while the
user is coding, using the integrated text editor, in order to make adequate
suggestions.

A key aspect of SmartCLIDE will be the capability to allow the user to specify the
desired behaviour of specific tasks by providing examples of data operations that
SmartCLIDE will use to infer and generalise the desirable behaviour. This coding-
by-demonstration mechanism can possibly be integrated with the editor of BPMN
diagrams, allowing the user to try do define the behaviour of specific tasks by
launching a dedicated assistant. This “Coding-by-Demonstration Assistant” will
allow the user to specify one or more data sets defining a collection of steps needed
to reach the desired output. This information can then be used by the DLE and
Service Composition components to define the generic behaviour of that task. The
specification of the actions that users can apply to the initial data sets on their
“demonstrations” will depend on the use case’s needs and on actions deemed feasible
by the SmartCLIDE technologies.

As a Cloud IDE, SmartCLIDE will have to support multiple users, working
simultaneous either in collaboration or in parallel with each other. To support this
individual development processes, SmartCLIDE must support the assignment of
separate workspaces to each SmartCLIDE user. To enable this mechanism, the user
interface and SmartCLIDE backend need to interact with each other in order provide
a user management system. This system must be complemented by a workspace
management tool that manages the workspace(s) associated to each user and provide
a mechanism to dynamic allocation of resources.

The current best candidate for the basis of SmartCLIDE IDE is Eclipse Theia and
this IDE is composed by a frontend and a backend server that communicate using

23 https://theia-ide.org

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 89

 Confidentiality: Public

JSON RPC. Theia IDE is often used along Eclipse Che24 to support the automatic
deployment of new Theia backends, each of which is associated to a specific user
workspaces. As shown in the figure below, a Che Server can manage user
workspaces, which can include several user projects and be distributed across
different machines. To support this Eclipse Che also provides a user authentication
and authorization system to control the access to team and individual workspaces.

Figure 50: Overview of workspace organization in Eclipse Che

The SmartCLIDE IDE should function separated from the core components of
SmartCLIDE backend. This would provide greater deployment flexibility and
separate the core SmartCLIDE logic and functionalities from the IDE used. As the
IDE needs to actively communicate with the several SmartCLIDE components to
expose the SmartCLIDE functionalities to the user, as represented in the following
Figure 51, the multiple instances of SmartCLIDE IDE will communicate with the
other SmartCLIDE components through the API gateway that aggregates all APIS of
each individual component, and manages the access to each one.

24 https://www.eclipse.org/che/

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 90

 Confidentiality: Public

Figure 51: Diagram of SmartCLIDE IDE and SmartCLIDE components communication

4.8.1 TRL 4 Lab Validations (Minimum Viable Product)
The User Interface and Workbench must take into consideration the entire user
experience on SmartCLIDE ecosystem. It should include not only the direct
experience of the user on the usage of the IDE, but also on the access to other
information and functionalities provide by SmartCLIDE technologies.

The first point of contact of a user with the SmartCLIDE ecosystem is an
authentication mechanism, which SmartCLIDE uses to determine which resources
the user has access to, and identifies the previous work developed by this user. An
example to a SmartCLIDE login page is shown in the Figure 52 below.

Figure 52: Login page for SmartCLIDE ecosystem

After a successful authentication the user should be provided with a Welcome
dashboard, as shown in the Figure 53 below. The purpose of this dashboard is to
provide a summary of information relevant for the user, identifying the services that
were recently created or modified, the recent community on the considered services,

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 91

 Confidentiality: Public

and the overview of the deployment status of the service deployments initiated by the
user. Both the “Service” and “Deployment” sections are overviews and provide a
connection to dedicated pages, where services and the deployments are presented in
more detail. Also, in this page contains buttons “New Service” and “New Deploy” to
provide the user with a quick access to common tools.

To facilitate the collaborative work on a team, this dashboard presents the
information related to all the services the user is involved with or which are shared
with the user. Consequently, the dashboard also shows the activity of other users on
the services.

Figure 53: Welcome page when a user logs in

When the user wants to see more details about the services, he can access the page
dedicated to the services. This page, presented in the following Figure 54, provides
access to 3 lists of services, presented in 3 tabs:

§ “My services” – presenting the list of services created by the user;
§ “Shared with me” – showing the list of services created by other users

(teammates), which were shared with the authenticated user;

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 92

 Confidentiality: Public

§ “Public services” - provides the user with a mechanism to search for other
services available in the public domain.

Figure 54: Services page

In those lists of services, the user can see relevant information about the services.
Each service is characterised by its name, date of creation and date of last update,
and the number of the last version. Moreover, if the service is configured to a CI/CD
system connected to SmartCLIDE, the state of the building process can also be
presented to the user. Service information is completed with the number of
deployments of that service that SmartCLIDE is aware of.

For each service is provided a set of actions:

§ Edit – Opens the SmartCLIDE IDE loaded with the selected service;
§ Build – Starts the building process of the service, according to the building

settings and CI/CD server configured;
§ Deploy – Starts the deployment wizard for the definition of the deployment

configuration and target infrastructure;

§ Delete – Deletes de service from SmartCLIDE.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 93

 Confidentiality: Public

This page also provides a button “New Service ” that the user can use to start a new
session on SmartCLIDE IDE in a clean state, ready for the implementation of a new
service. An example of how this plugin could look like the SmartCLIDE IDE is
shown in the Figure 55 below.

Figure 55: Example of SmartCLIDE plugin to support the development lifecycle

More details about the deployments can be in accessed in the “deployments” page. In
this page, represented by the following Figure 56, the user can see a brief description
and status of all the deployments executed under the user’s instructions, and the lists
of all Docker images that the user has access to.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 94

 Confidentiality: Public

Figure 56: Deployments page

Each deployment is characterised by the name given to it (for easy identification), as
well as which version of the service was deployed. It also provides information of
how many containers and networks are deployed, the execution state of the deployed
service, and for how long it has been in the current state. When the system detects
that a a deployment is not running the latest version of a service, the version “tag”
changes its colour to orange, highlighting this situation to the user.

For each deployment, the user is provided with a set of actions that we can use to
control the deployment get more information about it:

§ Start/Stop – Used to start or stop a deployment;
§ Containers – Allows to show more details about the state of containers in that

deployment;
§ Edit/Inspect – Opens SmartCLIDE IDE to allow the user to change

deployment configurations and check deployment monitoring data;
§ Upgrade – Re-deploys the service using the latest version of the images

available;

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 95

 Confidentiality: Public

§ Delete – Stops the deployment and removes deployment information from
pages.

The “New deploy” button starts the wizard for creating a new deployment. Most of
the functionalities on this page will be supported by the Services Deployment
component.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 96

 Confidentiality: Public

4.9 Smart Assistant
As stated, the goal of the Smart Assistant is to help both technical and non-technical
users along with the Software Development Stages. To this effect, it will have to face
a broad set of capabilities, being constantly present and giving different kinds of
suggestions in the IDE interface.

A further explanation of the Smart Assistant potential suggestions is provided below:

§ During the Requirements & Design phase:

- Guidance to define requirements and user stories using the Gherkin
syntax. Recommendations on the way requirements will lead to more
accurate tests, allowing an automatic generation to be more performant
based on NLP processing and existing tools.

- Reusability of previous BPMN schemes or components needed in a task
flow according to previous ones. This feature is supported by the DLE,
which will learn from previous BPMN schemes and use the context to
create behaviour patterns.

§ During the Development phase:

- Code analysis and syntax checking based on linters; potentially with AI
enhancements to improve response time and highlight more suitable
alternatives.

- Autocompletion for different languages based on the developer's
behaviour and context. Existing tools have to be checked, trying to
extract generalizations in order to make the autocompletion suitable for
different needed languages. The suggestion of parameters for completing
code templates, based on existing code, will be tested too.

- Guidance through the process of pushing changes into a version control
repository. Typical checking behaviours or best practices can be
suggested depending on the user development status.

§ During the Testing phase:

- Interpretations of the available tests. Once the tests are performed ,
subsequent actions to be conducted can be notified to the user depending
on the results, or try helping to determine the degree of refinement
needed to make a particular code successful.

- Suggestion and offer of a set of acceptance tests, preferably based on
initial Gherkin specifications. If Gherkin specifications are set,
acceptance test generation tools are to be checked in order to provide a
easy way to determine if desired functionalities are covered.

§ During the Deployment phase:

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 97

 Confidentiality: Public

- Suggestions or guidance through the deployment according to the
Services Deployment component. Metrics to be observed and assessed
during guidance can be: the suitability of different platforms, the degree
of readiness of a service, the environment where a service is deployed.

- Suggestions on configurations for deployment based on services
properties. Services will ideally have a set of deployment features (e.g.
required resources, available environments) which can help to suggest a
deployment setting (minimum, required, etc.) for their successful
deployment.

§ As a cross-wise helper, suggestions on the next steps to be taken based on the
user context. User interactions with the IDE interface can trigger events, which
properly managed along with the current action data may lead to appropriate
suggestions based on typical behaviours. The common interface defined in
Section 4.9.1 will make this suggestions visible to the user independently of
the software development stage at which they are aimed, allowing the user to
discard them or follow their indications.

All features have to be tested to determine their feasibility. A small subset, based on
the use case requirements, will be prioritised.

To perform these tasks, the Smart Assistant is supported by the DLE and guided by
the monitoring of users' actions, represented by the context abstractions. Both of
these component connections will be performed through a REST API.

Something that needs to be discussed is where Smart Assistant capabilities will
finally rest, as some of the suggestions can be provided by the DLE, and others don’t
seem to be necessarily supplied by the DLE in its role of AI provider. This means
that maybe third parties’ plugins can deal with particular tasks, or, in other words,
that suggesting capabilities can be given without adding AI complexity or
overloading the DLE with several different functionalities.

4.9.1 TRL 4 Lab Validations (Minimum Viable Product)

The Smart Assistant will rely on three basic items:

§ The interface within the IDE

§ The Context Monitoring
§ The DLE intelligent capabilities

The interface will be integrated into the IDE as a constant, discreet helper,
presenting a behaviour that highlights updates in a non-intrusive way, while stores
and gives access to them anytime they are needed. It will consist of:

§ A tab in the workspace of the IDE (see Figure 57). This tab will be bold in
some way (colour, icon, etc.), noting when a new suggestion is generated. This
tab will contain all the generated recommendations, split by the different
phases of the software lifecycle. It will always be visible.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 98

 Confidentiality: Public

§ Context menu, with a highlight of the location where the suggestion can be
applied. It will provide options in case short actions or quick changes are
required.

§ Other possible visualisations, such as floating notifications when events
susceptible to generate suggestions occur.

The Smart Assistant notifications system should be changeable both in a general way
(simple suggestions/all suggestions) and in a more specific, layout and options
degree of detail. That is, the grade of intrusion.

Figure 57: Smart Assistant - Workflow Composition

The Context Handling component. This item is crucial to acquire knowledge on
which is the behaviour of the user, and therefore when the suggestions have to be
created. Its abstractions are used by the DLE to predict behaviours.

The DLE. The Smart Assistant will rely on the predictions of the DLE models. Its
role will depend on to which point AI is needed to support the suggestions, as some
operations don’t necessarily need from Machine Learning algorithms.

Initially, a basic set of suggestions will be leveraged for each phase, building a proof
of concept for:

§ The mechanisms of reaction to what the user is trying to do.
§ The degree of assistance that can be expected for each software development

phase.
§ The accuracy and suitability of the recommendations.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 99

 Confidentiality: Public

These items will be adjusted depending on the needs observed by the partners and at
the use cases, as well as other review actions, such as the success in the development
of particular suggestion functionalities, e.g., adding programming languages.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 100

 Confidentiality: Public

4.10 Services Deployment
The “Services Deployment” component will provide a front-end for deploying new
services in SmartCLIDE. This interface will allow the developer to visualize the status
of deployed containers through a web-based interface accessible through a
URL. Moreover, it will also allow the developer to deploy new services by providing
a file that describes the application to deploy (i.e., stack).

To do so, the “Services Deployment” component will exploit the “Service Creation,
Composition and Testing” component, which will allow the “Services Deployment”
component to retrieve information about running containers, and to deploy new
containers by using Docker Engine tools. This process is illustrated in the diagram
below:

Figure 58: Process to deploy new Docker containers

4.10.1 TRL 4 Lab Validations (Minimum Viable Product)
After analysing the state of the art and initial requirements, we present the initial
mock ups of the ‘Services Deployment” component. This component provides a
front-end for the deployment services and will also provide an API to allow other
modules in SmartCLIDE to interact with the Composition Backend Services.

The User Interface will be accessible through a web URL, and will present a left
vertical menu for choosing between different visualization options, such as overview,
stacks, containers, images, or the deployment tool.

The first element in the menu is the Overview sheet (see Figure 59), which will show
some general information about deployed stacks or containers. This information will
be determined depending of what information is available through the backend
services.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 101

 Confidentiality: Public

Figure 59: Service Deployment – Overview

Then, the next element in the menu is the Stacks sheet (see Figure 60), which will
show the collection of Stacks recognised in the Docker environment. A Stack
represent a complex application that is composed of a series of containers (e.g., a
web server and a database system), so it can be deployed, started and stopped as a
whole. The Stacks view will detail some information such as the stack name, the
number of containers in the composition, the number of involved networks or its
general state (e.g., running, paused…).

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 102

 Confidentiality: Public

Figure 60: Service Deployment - Stacks

The next element in the menu is the Containers sheet (see Figure 61) in a similar way
to the stacks one, but which will show relevant information about existing containers,
such as the image, ports exposure, or its state.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 103

 Confidentiality: Public

Figure 61: Service Deployment - Containers

Next sheet will include information about existing Images (see Figure 62), such as
their name, time stamp, or size.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 104

 Confidentiality: Public

Figure 62: Service Deployment - Images

Finally, the last tab will allow the developer to Deploy a new stack of containers by
providing the description file (see Figure 63). This functionality will also be
accessible by a REST API.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 105

 Confidentiality: Public

Figure 63: Service Deployment - New Deployment

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 106

 Confidentiality: Public

5 Conclusions
This document presented a detailed description of the SmartCLIDE concept. A
generic scenario was presented to explain the different aspects of the SmartCLIDE
solution, and an architecture was chosen to describe the technical aspects, as well.
Together with this, the main description of the different components of the
SmartCLIDE solution was given.

The presented SmartCLIDE concept will serve as the main input for the succeeding
work packages WP2 - Innovative approaches on Services Discovery, Creation,
Composition and Discovery, WP3 - Implementation of SmartCLIDE framework
components, and WP4 - Integration and Validation, which will specify, implement,
and integrate the different SmartCLIDE components into the final SmartCLIDE
solution.

 D1.4 The SmartCLIDE Concept

30.10.2020 Version 1.0 107

 Confidentiality: Public

6 References
1. Hommeaux, E. P., A. Seaborne (2008). SPARQL Query Language for RDF, W3C

Recomm. \url{http//www.w3.org/TR/rdf-sparql-query/}.

2. Lependu, P., D. Dou (2011). Using ontology databases for scalable query answering,
inconsistency detection, and data integration, J. Intell. Inf. Syst.

3. LePendu, P., D. Dou, G. A. Frishkoff, J. Rong (2008). Ontology database: A new method
for semantic modeling and an application to brainwave data, In Proceedings Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics).

4. Dou, D., H. A. N. Qin, P. LePendu (2010). Ontograte: Towards automatic integration for
relational databases and the semantic web through an ontology-based framework, Int. J.
Semant. Comput.

5. Reyes-Álvarez, L., M. del M. Roldán-García, J. F. Aldana-Montes (2019). Tool for
materializing OWL ontologies in a column-oriented database, Softw. - Pract. Exp.

6. 2019. Python Eve, 2019 (2019). Available at: http://docs.python-eve.org/en/stable/, visited
on 2019-10-16.

7. 2019. Flask, 2019 (2019). Available at: https://palletsprojects.com/p/flask/, visited on
2019-10-18.

8. OAuth 2.0 (2020). Available at: https://oauth.net/2/, visited on 2020-09-10.

9. 2019. Swagger, 2019 (2019). Available at: https://swagger.io/, visited on 2019-10-15.

10. Scrapy (2020). Available at: https://scrapy.org/, visited on 2020-09-11.

11. Beautiful Soup (2020). Available at: https://www.crummy.com/software/BeautifulSoup/,
visited on 2020-09-10.

12. Apache Software Foundation2014. Apache Lucene Core, 2014 .

13. Apache Lucene Core (2020). Available at: https://lucene.apache.org/core/, visited on
2020-09-10.

14. PyLucene (2020). Available at: https://lucene.apache.org/pylucene/, visited on 2020-09-
10.

15. Solr (2020). Available at: https://lucene.apache.org/solr/, visited on 2020-09-10.

16. Docker (2020). Available at: https://www.docker.com/, visited on 2020-03-11.

17. Kubernetes (2020). Available at: https://kubernetes.io/, visited on 2020-09-10.

