
SmartCLIDE∗

Runtime Monitoring and Verification (RMV)

Rance DeLong

September 12, 2022

Abstract

SmartCLIDE offers services to accelerate the creation and deployment of Cloud solutions
by providing the ability for non-programmers to construct applications and new services
using smart automation. One of the backend services provided by SmartCLIDE is runtime
monitoring and verification (RMV) which in conjunction with automated testing is applied
to assure the quality of the created services. In this paper we describe the objectives of
RMV, and provide an overview of the approach and the benefits.

SmartCLIDE Quality Assurance

SmartCLIDE constructs new services according to the user’s specifications from pre-existing and
bespoke components. Supplementing the construction of new services, SmartCLIDE’s strategy
for quality assurance (QA) of user-constructed services includes both development-time and run-
time quality assurance for functional and non-functional properties. In addition to the expected
functional behavior of a service, key characteristics such as security, safety, privacy, resilience
and reliability are general categories of runtime quality attributes that may be required of the
service. Runtime QA is applied along with design-time QA, development testing, verification
and qualification testing to assure that the needed quality attributes have been achieved.

Assurance of the correctness of a service may be addressed largely by the manner of its con-
struction, giving rise to the term correct by construction. To achieve it a rigorous methodology is
required, typically supported by automation1 and tools. By automating the construction process
certain sources of potential flaws may be systematically eliminated. In SmartCLIDE automation
extends to AI-powered assistance in the selection and composition of components. SmartCLIDE
can already make some claims to correctness by construction because the automation is system-
atic. However, the details of the construction methods may not be rigorous enough to extend
correctness by construction to every functional or non-functional claim that could be made for a
SmartCLIDE-constructed service.

Whilst, runtime QA is also a concern for entirely human-fashioned software artifacts, it may
be even more beneficial for software that is constructed without human involvement and scrutiny

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 871177

1Here “automation” or “automated” are used for processes that are fully or partially automated.

1



of every design and implementation decision. By reducing the development effort through au-
tomation some of the detailed expert human scrutiny that the service development would oth-
erwise receive will likely not occur. Subtle semantic anomalies and “corner cases” may go un-
detected when automation uses service specifications to construct service implementations from
diversely sourced and specified components, and only surface when run-time execution behaviors
are observed.

Complementary Quality Assurance Methods

Among the methods that that could have been utilized for quality assurance of SmartCLIDE-
created services are: correctness by construction, formal verification (FV), automated testing,
and runtime verification RV. All of these methods, except for formal verification, are employed
in SmartCLIDE. FV provides construction-time assurance that increases confidence that run-
time behavior will not include unwanted effects by exploring all possible executions a priori.
The application of FV, even the “fully-automated” kind, is typically expensive: being labor-
intensive and requiring specialized expertise. It must be re-performed whenever the model is
changed. Furthermore, it typically only verifies the model (an abstraction) of the implementation
as opposed to the actual executable implementation. Due to these considerations we do not
further consider FV as a viable routine activity in SmartCLIDE.

Conventional testing is one of the standard methods of discovering and correcting the sources
of errant behaviours, and this method is also applied in SmartCLIDE by doing automated testing
for SmartCLIDE-created services in addition to the unit and integration tests of the SmartCLIDE
components themselves. Testing of SmartCLIDE-created services has the benefit that the actual
service implementation is exercised in the tests rather than a model of the implementation as
would be the case in FV. Testing involves identification of a finite number of test scenarios and
test cases. As always, the issue with finite testing of a reasonably complex system, which has
a potentially, and practically infinite number of distinct behaviours, is one of confidence in the
adequacy of the testing, in particular that of chosen test cases and the test data. When test
cases and test data are chosen automatically an additional source of automation-induced error
or incompleteness is a source of adequacy concern.

Another potential source of runtime misbehavior has nothing to do with the construction
or the functionality of a service but with the assumptions that underlie, possibly implicitly,
the implementation of a component or a service. The implementation is only valid as long as
these assumptions are satisfied and maintained. When assumptions are violated, either through
incorrect composition of components, or through dynamically changing conditions at runtime,
the implementation is likely to misbehave or completely fail.

Runtime monitoring and verification (RMV) is an aspect of the SmartCLIDE QA strategy
that is used primarily at run time but also may be beneficial in the latter stages of development.
RMV is able to check the monitored service at every step to confirm that it’s behavior in the
current run is consistent with its specifications and the, necessarily limited, results of prior finite
testing. One of the main strengths of runtime verification is that it has the potential to detect a
deviation from the required behaviour due either to an incorrect implementation of the specified
behavior or to the, possibly dynamic, invalidity of an assumption.

Assurance of the runtime behaviour is addressed by validating that the service actually ex-
hibits behavior consistent with the user’s specification and with development-time test results,
and that the assumptions made about the runtime environment, which were made at design time

2



and thus built into the construction of the service, continue to be valid as the service executes.

Runtime Monitoring & Verification

Figure 1 shows an overview of the components of the SmartCLIDE RMV subsystem. The RMV
subsystem interacts with other SmartCLIDE components through Message Oriented Middleware
(MoM) or direct IPC, and uses an external tool, NuRV [CTT19b], to generate property monitor
state machines. Property monitors are synthesized from a formal model of the nominal behavior
of the created service and a specification of required properties using the method of assumption-
based runtime verification (ABRV) [CTT19a].

Figure 1: RMV Subsystem Overview

These components include:

1. Monitor Creation - Uses a Service Specification provided from SmartCLIDE along with el-
ements contained in the Monitor Library to construct a property monitor using the NuRV
monitor synthesis tool, and a configuration vector for the Monitor Sensor. It stores infor-
mation about the created monitor in the Monitor Library.

2. Monitor Sensor - A component with versions implemented in various programming lan-
guages that provides presence for the monitor within the SmartCLIDE-created service.
When the service starts the Monitor Sensor is customized with specifics from the config-
uration vector. Subsequently the Monitor Sensor generates messages to Monitor Event
Processing conveying information about the configured variables it shares with the moni-
tored service.

3. Monitor Event Processing - Receives messages from the Monitor Sensor, which it processes
according to the configuration for that monitor that is stored in the Monitor Library. The

3



configuration may indicate that the values of logical conditions, based on the values of
variables within the monitored service, are to be sent to a NuRV property monitor that
will return a verdict on whether the monitored property is satisfied, violated, or (as yet)
unknown. The result may be sent to other SmartCLIDE components that have registered
for notifications.

4. Auditing, Logging, and Notification - Provides the ability to distribute monitoring data
and results, to record security-relevant (or other property related) events in a persistent
log, and to provide a consolidated auditing, logging and notification service to registered
SmartCLIDE or application components.

5. Monitor Library - Contains global definitions and patterns for monitor construction as well
as information about the specific monitors that have been constructed. The monitor library
is access both at monitor construction time and at monitor execution time.

6. RMV User Interface within the SmartCLIDE Service Creation UI - An optional user in-
terface that can be used by a service developer to modify the configuration of a service
monitor, to enable/disable monitoring actions, add/delete monitored variables and proper-
ties, and regenerate a modified monitor. Without the UI such changes can also be achieved
by editing the generated monitor’s configuration vector.

In addition to the ability to monitor created services to assure that they operate within their
specifications, the RMV framework provides the capability to construct bespoke monitoring
services using the RMV monitor sensor to gather runtime data, that may be used in arbitrary
ways by other system services or as part of application services.

References

[CTT19a] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime
verification with partial observability and resets. In Bernd Finkbeiner and Leonardo
Mariani, editors, Runtime Verification, pages 165–184, Cham, 2019. Springer Inter-
national Publishing.

[CTT19b] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Nurv: A nuxmv extension for
runtime verification. Berlin, Heidelberg, 2019. Springer-Verlag.

4


