

Eclipse Open SmartCLIDE: An End-to-End Framework

for Facilitating Service Reuse in Cloud Development

Nikolaos Nikolaidis1, Elvira-Maria Arvanitou1, Christina Volioti1, Theodore Maikantis1,

Apostolos Ampatzoglou1, Daniel Feitosa2, Alexander Chatzigeorgiou1, Phillipe Krief3

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

2 Department of Computer Science, University of Groningen, Groningen, the Netherlands

3 Eclipse Research Labs, Eclipse Foundation, Germany

nnikolaidis@uom.edu.gr, e.arvanitou@uom.edu.gr, a.ampatzoglou@uom.edu.gr, achat@uom.edu.gr, philippe.krief@eclipse-foundation.org

Service-Oriented Architectures (SOA) have become a standard for developing software applications, including

but not limited to cloud-based ones and enterprise systems. When using SOA, software engineers organize the

desired functionality into self-contained and independent services that are invoked through end-points (with API

calls). The use of this emerging technology has changed drastically the way that software reuse is performed, in

the sense that a “service” is a “code chunk” that is reusable (preferably in a black-box manner), but in many (es-

pecially “in-house”) cases, white-box reuse is also meaningful. To confront the reuse challenges opened-up by

the rise of SOA, in the SmartCLIDE project1 we have developed a framework (a methodology and a platform) to

aid software engineers in systematic and more efficient (in terms of time, quality, defects, and process) reuse of

services, when developing SOA-based cloud applications. In this work, we: (a) present the SmartCLIDE meth-

odology and the Eclipse Open SmartCLIDE platform; and (b) evaluate the usefulness of the framework, in terms

of relevance, usability, and obtained benefits. The results of the study have confirmed the relevance and rigor of

the framework, unveiled some limitations, and pointed to interesting future work directions, but also provided

some actionable implications for researchers and practitioners.

Keywords: reuse; service-based development; cloud development; platform

1. Introduction

With the advent of open-source software (OSS) and the continuous adoption of open practices, software reuse

has become widely popular, due to the enormous amount of freely and openly available software assets (e.g.,

code, components, or services) (Wang et al., 2008). Reuse of software assets is the process of using already

available solutions to construct new software or enhance an existing one with new functionalities; thus, forgoing

(or at least trying to minimize) the from-scratch development process (Krueger, 1992). Reuse is expected to

bring important benefits to software development, especially with respect to time to market and quality (i.e.,

fewer bugs, improvement of product and development process) (Baldassarre et al., 2005). In literature, there are

two mainstream processes to reuse: systematic reuse, e.g., through product lines, model-driven engineering, etc.

(Brinkkemper et al., 2008); and opportunistic reuse, e.g., by searching development forums like StackOverflow

for pieces of code (Digkas et al., 2019), or OSS repositories for classes, libraries, or products (Capiluppi et al.,

2011). Focusing on OSS, as a “code reuser”, a developer must perform two major tasks:

• Identify Reusable Assets. In this step, the reuser must identify a piece of source code (e.g., method, ser-

vice, class, set of classes, complete project, etc.) that implements the functionality that s/he wants to reuse.

This task is a very difficult one, in the sense that: (a) the available number of reusable assets is vast and

usually not well documented, and (b) there is a lack of platforms, acting as engines for accessing OSS re-

positories—especially in the domain of service-based development.

1 An EU-funded Research and Innovation project with a duration of 40 months, supported by a consortium of 11 research, innovation, and

industrial partners.

mailto:nnikolaidis@uom.edu.gr
mailto:e.arvanitou@uom.edu.gr
mailto:achat@uom.edu.gr
mailto:philippe.krief@eclipse-foundation.org

• Adapt the Assets to the Target System. In this step (after the reusable asset has been identified—and if

modification is required), the reuser must adapt the source code of the asset as extracted from the source

system (in case of white-box reuse) to fit the architecture of the target system. Such an adaptation requires

that the asset is well-structured and maintainable. The assessment of the maintainability of a service is a

non-trivial task since the current state-of-practice lacks dedicated methods and tools.

By considering the rise of the ‘everything as a service (XaaS)’ model, as well as the current advancements in

cloud computing, software development rapidly moves towards developing and deploying all software assets as

services (Turner et al., 2003). This emerging change has raised several challenges in software development (Xu

et al., 2018; Yang, 2012) and yields for specialized solutions. For example, according to Lewis et al. (2010) the

research agenda on service-based software development (published by the SEI) prompts for the introduction of

development methodologies that foster service reuse to reduce development costs (need-1). Currently in the lit-

erature there are various methods for service reuse (see Section 2.2), but to the best of our knowledge there is no

end-to-end framework for facilitating service reuse in practice, helping developer through rigor and industrially

relevant solutions (need-2). Additionally, by considering that the general field of service-based development has

produced some very well-established solutions, such as Docker for deployment, Jenkins for CI/CD, and Kuber-

netes for Orchestration, any provided solution shall not re-invent the wheel, but try to integrate all these proven

tools. However, an additional aim of such endeavors must be to hide the complexity and the need for configuring

isolated tools, to reduce the levels of required knowledge and development time (need-3).

In this paper, we introduce the SmartCLIDE framework that promotes systematic reuse, while developing ser-

vice-based software solutions for the cloud. The framework comprises of the SmartCLIDE development meth-

odology and the Eclipse Open SmartCLIDE platform (i.e., an Eclipse Research Labs open-source project, avail-

able under a EPL 2.0 license) that is developed for enabling the adoption of the methodology in practice. The

proposed methodology can be “sketched” as follows:

1. [SERVICE COMPOSITION] the software engineer, first specifies a set of services (candidates for reuse)

that will be composed to build the final system;

2. [SERVICE DISCOVERY] then, attempts to discover existing services that implement the desired functional-

ity, from in-house and OSS sources (identification of reusable assets) to be reused;

3. [SERVICE CREATION] if not reused, the software engineer develops services of optimal reusability and

adaptability (develop for reuse) and places them into a reusable assets’ repository.

The SmartCLIDE methodology contributes towards alleviating need-1. While instantiating the methodology, we

have selected various existing technologies to be integrated into the Eclipse Open SmartCLIDE platform (related

to need-2) that provides a unified interface that hides the complexity of managing various independent tools (re-

lated to need-3). SmartCLIDE2 has been implemented as part of an EU-funded research project, whose main

outcome is the proposed framework (methodology and platform). We note that the way of instantiating the indi-

vidual steps of the SmartCLIDE methodology, have been already published during the project—validating their

research rigor. Therefore, we do not repeat them in this work to focus exclusively on novel and unpublished ma-

terial. Thus, in this work, we empirically validate the SmartCLIDE framework in terms of: (a) industrial rele-

vance; (b) usability, and (c) benefits that it can bring to SOA-based cloud development companies.

The rest of the paper is organized as follows: In Section 2, we present related work on service-oriented software

development (Section 2.1), and service reuse (Section 2.2). In Section 3, we introduce the SmartCLIDE method-

ology, starting from the requirements for its construction (Section 3.1) and the details of its instantiation (Section

3.2). In Section 4, we present the case study design, whose results we report and discuss in Section 5. In Section

6, we present the limitations / threats to validity, whereas in Section 7, we conclude the paper.

2 https://smartclide.eu/

https://smartclide.eu/

2. Related Work

2.1 Service-Oriented Software Development

Service-Oriented Software Development was proposed in the 1990s as a new design paradigm to decouple ser-

vice-side applications and improve the reuse of components (Singh and Peddoju, 2017). Microservices inherited

the principles and concepts of the service-oriented architecture (SOA) style and structures a multiple service-

based application into a set of loosely coupled software services (De Lauretis, 2019). Moreover, microservices

not only allow for the decomposition of software components but also allow the organization of software devel-

opment companies into small, autonomous teams that can implement various programming languages and tech-

nologies while working independently. So, in a way microservices can be considered a subtype of SOA (De Lau-

retis, 2019). There has been a lot of work on SOA and microservices regarding their benefits and weaknesses, as

well as the comparison and migration from one to the other. The SOA represents a new way of developing sys-

tems, which promotes a shift from writing software to assembling and integrating services (Mahmood, 2007).

Some of the main benefits are: (a) Loosely coupled applications and location transparency; (b) Enhanced reuse

of existing assets and applications; (c) Process-centric architecture; (d) Parallel and independent development;

and (e) Better scalability (Mahmood, 2007; Johnson, 2004; Jamshidi et al., 2018; Djogic et al., 2018). All these

benefits are also valid for microservices; Raj et al. (2022) extended the list with business benefits: (a) Focus on

business requirements; (b) Quick evolution; (c) Organizational alignment; (d) Reduced costs; (e) Reduced Time-

to-market.

To siege these benefits, the organization must be willing to face some costs, but with the right project or devel-

opment team, it can be worth the selection. The challenges are pointed out by a plethora of papers (Mahmood,

2007; Raj et al., 2022; Djogic et al., 2018; Liu et al., 2020) and some of them can be performance issues, debug-

ging, and data consistency. Dai et al. (2020) pointed out that each service needs to use the communication inter-

face between its services to perform transaction operations. Therefore, network communication is a negative

factor affecting the performance of microservices. Moreover, (Zhou et al., 2018) pointed out that the current de-

bugging of microservices systems depends largely on the developer's experience with the system and similar

failure cases, and mainly relies on manual methods to check logs. Having said that, each architecture has its ben-

efits and disadvantages, so Liu et al. (2020), also provided a comparison of traditional monolithic architecture,

service-oriented architecture (SOA), and microservices architecture. Also, a lot of studies have been done on the

aspects of migration from one to the other, along with strategies and lessons learned. Regarding the migration

strategies, first Raj et al. (2022), demonstrated a5-stepp migration strategy, and performed it in a standard case

study application. Secondly, Lauretis (2019) defined a migration strategy, from a Monolithic Architecture to a

Microservices Architecture, to take advantage of several benefits offered by microservices architecture, such as

scalability and maintainability, and more. This strategy rotates around the business functionalities concept, and it

is composed of five phases: (a) Function analysis, (b) Business functionalities identification, (c) Business func-

tionalities analysis, (d) Business functionalities assignment, and (e) Microservices creation.

2.2 Software Reuse in SOA

With respect to supporting the reuse of services in SOA, there is related work that takes on some of the problems

also addressed by the SmartCLIDE methodology, e.g., service discovery, composition, or creation. Blal et al.

(2017) tackled the area of model-driven service specification, proposing a method that generates SOA services

from the specification of business processes expressed in BPMN, aiming to bridge the gap between business

processes and SOA-based applications that support them. SmartCLIDE also employs BPMN, however, it also

exploits this approach to explore service composition by extracting textual representations that can be used to

discover services. Elqortobi et al. (2018) proposed an architecture for the dynamic composition of web services

guided by a live testing technique. This approach aims to optimize resources and improve the efficiency of au-

tomating and integrating business processes based on SOA. Masood et al. (2019) also mentioned the importance

of smooth selection, configuration, and composition of existing services to deal with runtime changes or the evo-

lution of end-user requirements in service-based systems. SmartCLIDE also aims to support service composition,

however, it does not focus on the runtime, but rather on the design time, i.e., it supports the composition of ser-

vices during the design of a business process. Chen et al. (2023) proposed a keyword-driven service recommen-

dation approach, which employs a deep reinforced Steiner tree search (K-DRSTS) on a service-keyword correla-

tion graph (SKCG). Similarly, Bianchini et al. (2018) developed a discovery and recommendation technique,

considering factors such as developers' social networks and experience in web application development. Finally,

Zhao et al. (2022) addressed the issue of the lack of attention to semantic and syntactic information in web ser-

vice classification and, in response, proposed the use of a relation-aware graph attention network. In contrast,

SmartCLIDE provides a tiered solution, considering in-house, domain-related, and domain-agnostic services,

which boosts the finding capabilities of SmartCLIDE multi-model search discovery approach. Finally, when

focusing on microservices, noteworthy is the ecosystem that Ericsson developed to systematically practice large-

scale reuse of microservices in a cloud-native context. Usman et al. (2022) discusses in detail how various eco-

system aspects facilitated the development and reuse of microservices across Ericsson products, along with some

lessons learnt. The Ericson ecosystem (ADP) shares several similarities to SmartCLIDE, especially in terms of

motivation (reuse through a Marketplace or Repository) and development paradigm, but also differences: e.g.,

among others, not offering an IDE for Service Creation.

2.3 Novelty and Contributions

The main novel contributions of this work can be summarized as follows: First it describes the end-to-end

SmartCLIDE development methodology, helping organizations to systematically apply reuse, when developing

service-based software applications. The integration of the specific steps of the methodology, under a high-level

working guide, can help organizations in understanding the bigger picture and the context through which each

step is applied. Second, we strongly believe that to aid organizations in applying the methodology, there is a

need for tool support. The development of Eclipse Open SmartCLIDE is an important contribution to the com-

munity, since this advances state-of-practice, enabling the developers to easily use all the developed approaches.

The fact that portion of this platform is reused, is expected, since we do not want to re-invent the wheel in all

steps: e.g., we do not need a new Docker, or a new Jenkins, but we believe that it is an important improvement to

integrate it together with one of the most popular IDEs (Eclipse) and use a variety of tools through a common

interface. Finally, this work provides evidence that the end-to-end solution is valuable to the practitioners, since

it explores its industrial relevance, the benefits that it brings, and assesses its usability. We note that this step is

completely novel, in the sense that this is the first evaluation on the platform and the proposed development

methodology.

3. Introduction of the SmartCLIDE Framework

3.1 Industrial Requirements for SmartCLIDE Framework

The requirements elicitation process started in mid-2020 and was continued as an on-going process for almost

one year. The pilot cases of SmartCLIDE provided the basis for the derived industrial requirements, which have

been prioritized by the industrial pilot partners and have been categorized to facilitate the detailed specifications

of technologies, methods, and tools that needed to be developed within the project. Further inputs have been col-

lected from external industrial software developers, via an online survey to verify, validate and indicate the po-

tential scope of requirements coming from the pilot partners in the project3. The industrial pilot cases and broad-

er survey results have been analyzed by the R&D partners, the associated technical challenges, and technological

approaches for addressing the industrial requirements are identified for each of the major development environ-

ment components. The resulting requirements from the industrial pilot cases and those specified for each of the

development environment technology components provide the baseline requirements that have driven the devel-

opment of the SmartCLIDE framework.

The first two steps of the process (i.e., pilot case analysis and categorization) have led to a set of 105 functional

requirements4 that have been classified into the following key high-level requirements: (a) Services Creation; (b)

Services Discovery; (c) Services Composition; (d) Services Testing; (e) Services Deployment; (f) Usability and

Visualization Requirements; (g) Code Repository; (h) Quality Assurance; and (i) AI support. The elicited re-

quirements have been tagged as “MUST”, “SHOULD”, and “COULD”, by all pilot providers, so that an initial

prioritization to take place. The industrial survey that followed was conducted with 25 practitioners, with differ-

ent software development roles, representing 18 different companies from different regions of the EU. Among

these companies, 50% were SMEs mainly in the range of 10-150 employees, with the other 50% being from

large organizations with 500+ employees. Based on the pilot partners’ requirements prioritization and the results

of the online survey, in Table 1, we present the key features that we have implemented in SmartCLIDE frame-

work. We remind the reader that for most of these features, an individual validation on their accuracy and re-

search rigor has already been performed in previous studies (see Appendix A). The implementation of each fea-

ture in Eclipse Open SmartCLIDE is presented through a walkthrough in Appendix B.

Table 1. SmartCLIDE Features

Feature Description

Service

Composition

The user must be able to design SOA-based systems in a drag and drop manner to enable

novice users to compose workflows, from deployed services or microservices. The compo-

sition of services and their visualization must rely on well-defined and -known standards or

notations (e.g., UML, BPMN, etc.). In terms of reuse, this feature is the key for functional

decomposition and the initial stage for identifying candidates for reuse.

Workflow

Summarization

To enable the understanding of the functionality of an already designed workflow, even

from stakeholders not involved in the original development the system should provide an

AI-based mechanism that will textually summarize the functionality of the workflow. In

terms of reuse, this feature can provide textual information on the needed functionality, to

feed the service discovery feature (see below) more accurately.

Workflow

Quality

Assessment

The workflow (composition of services) represents the system-level design, i.e., which

services and how work together so as to provide the needed functionality. Therefore, quali-

ty assessment at the level of the workflow must be facilitated. The platform must be able to

assess the security and the maintainability of the workflow. In terms of reuse, it is of para-

mount importance of being able to monitor (in a high-level way) the quality of the target

system, to accept reuse suggestions or decline them to develop from scratch a more high-

quality level components’ solution (if not satisfactory).

3 Due to an NDA with the industrial partners of the consortium, the deliverable describing the requirements of SmartCLIDE has been

characterized by EU as confidential, in the sense that the pilot applications were presented in rich details. Therefore, a link is not available

for the full reporting. In this section, we describe only the necessary information to understand the rest of the document.

4 Examples of such requirements are: “SmartCLIDE is able to search resources and services of an existing system through its REST API”,
“SmartCLIDE provides workflow mechanisms to easily decompose problems into smaller pieces”, “SmartCLIDE provides support for

integrating an online coding IDE and a BPMN Editor for code formatting and syntax error highlighting and integration with external

services”, etc.

Feature Description

Service

Discovery

The solution must be able to support queries to external and internal records to identify

services that can serve a given functionality. This feature is the heart of reuse in the

SmartCLIDE solution. The solution must be able to retrieve, store, classify, and recall ser-

vices from: (a) open-source software; and (b) in-house repositories. These services must be

recalled by functional relevance, when requested by the workflow composition feature.

Service

Creation

The solution must provide a cloud-based IDE for developing services if they cannot be

reused. The IDE must support (initially the Java language), must provide support for man-

aging a code repository, and seamlessly initialize a CI/CD process. The solution must be

easy to use and hide the technical complexity of the tools.

Design Patterns

Selection

Assistant

When developing services from scratch, the solution should support the decision-making

of the software engineer in terms of object-oriented design. The system should provide

some AI-based decision-support for instantiating GoF patterns, i.e., the most-known pat-

tern catalogue. Other types of patterns, such as architectural patterns and security patterns

will also be considered, but no instantiation mechanisms (i.e., code generation) will be

offered.

Test Generation

The solution must be able to provide AI-based support for testing. The platform must gen-

erate some (at least the basic) test cases for a service developed from scratch. The tests

generated are in the form of Junit code.

Service Quality

Assessment

The solution should be able to assess the quality of a software service. This service can

either be a service developed from scratch or a service that has been discovered and cloned

for modification in the Eclipse Theia project workspace (i.e., a local code repository). Sim-

ilarly, at the workflow level, the solution must assess security & maintainability. Since this

feature is relevant only for the case of white-box reuse, reusability will also be assessed.

Deployment

The solution must be able to easily deploy and monitor both services and workflows. The

deployment must rely on well-known and existing solutions, similarly to service composi-

tion (technology reuse).

3.2 SmartCLIDE End-to-End Methodology for Developing SOA Applications

The proposed solution aims to boost the reuse of services, at three levels (ordered by priority): (a) in-house

reuse—reusing services that have been developed and deployed internally; (b) domain-specific reuse—reusing

services that are released as OSS, and the source and target systems belong to the same application domain (e.g.,

games, business applications, etc.); and (c) domain-agnostic reuse—reusing OSS services from a different

application domain. We clarify that domain-specific reuse is promoted in SmartCLIDE, since reuse is more

efficient when performed within the same application domain (Snook et al., 2004).

To achieve this goal, in SmartCLIDE, we have tailored the REACT reuse process (Lampropoulos et al., 2018) to

fit the service-based software development paradigm, as illustrated in Figure 1—in the discussion, with bold and

italic fonts we denote where each feature presented in table is placed.

[PHASE-1: REUSE CONCEPTION] We consider that after analyzing the requirements, the engineer designs

the solution through BPMN modelling (i.e., theoretically solves the problem by composing services—

service composition).

[PHASE-2: REUSABLE ASSET IDENTIFICATION] The services in this model correspond to the

candidates for reuse, which are then attempted to be identified (service discovery) in the SmartCLIDE

repository (in house, domain-specific, domain-agnostic services are queried).

[PHASE-3: REUSABLE ASSET ADAPTATION] If the service discovery is not successful, the flow goes to

service creation, i.e., the developers would need to build their own solution from scratch. This process is

repeated until the reuse candidates list is exhausted. During the SmartCLIDE project, we have brought

several enhancements to the process, by supporting the developer with various additional tools (such as a

design patterns selection, test case generation, automated deployment, workflow summarization, etc.)

that can accelerate development / improve the process, leading to a product with fewer bugs and better

structural quality.

The full list of the developed features is presented in Appendix A, as well as the way that we have instantiated

them. We remind that the goal of the upcoming validation is not to assess how the features are implemented, but

if the way they are implemented is ready to apply in practice (i.e., relevant, useful, and easy to use).

Figure 1: SmartCLIDE methodology for the reuse of software services

4. Empirical Validation

4.1 Objectives & Research Questions

The main target of the SmartCLIDE project was the provision of a platform that is relevant (i.e., applicable, and

useful) to the SOA-based cloud application development industry, as well as usable, that would foster a reuse

culture. These targets are the basis for the empirical validation presented in this study. According to the goal of

the study, we have derived three research questions (RQ):

RQ1: Is the SmartCLIDE framework industrially relevant?

Through this research question, we first explore if the framework is appealing to industrial stakeholders and

therefore if they would find it useful to adopt in the future. In this research question, we are interested in under-

standing if some specific features of SmartCLIDE are more useful than others. We note that the research rigor of

SmartCLIDE approaches has already been evaluated in previous studies—see Section 2.2. The answer to this

question can unveil interesting research directions for the cloud and SOA communities, the Research & Devel-

opment team of SmartCLIDE, and is interesting to participants in the sense that they can get a hint on which

features are more applicable, based on the perception of their colleagues.

RQ2: To what extent can the use of the SmartCLIDE platform bring benefits in SOA-based cloud application

development industries?

The motivation for this research question is two-fold: (a) to explore if the SmartCLIDE solution can “persuade”

practitioners to employ reuse into their cloud development projects. From the analysis one can also identify the

features that they need to promote inside their company to build a reuse culture; (b) to explore the benefits that

the solution can bring to industries, by facilitating reuse. Such benefits could be time saving, increase in the qual-

ity of the solution; less buggy code; or process improvement. The answer to this research question can be useful

for researchers and practitioners, in the sense that practitioners can identify the features of the platform that they

can employ to achieve cost reduction and better quality, whereas researchers can get insights on the effectiveness

of various techniques; thus, better focusing their future research endeavours.

RQ3: What is the usability of the Eclipse Open SmartCLIDE platform?

Apart from being relevant and useful in practice, for a research prototype to be industry-ready, a key factor is to

be usable. Through this research question, we focus on the usability of the SmartCLIDE solution, assessing its

ease of use, learning curve etc. We note that for this research question the evaluation is system-wide, since the

usability cannot substantially differentiate among features. The outcome of this research question is of para-

mount importance to the R&D team of SmartCLIDE for improvement suggestions, as well as the interested prac-

titioners since it guarantees to some extent the end-users’ experience.

4.2 Case Selection and Units of Analysis

This study is an embedded multiple case study, in the sense that it involves multiple units of analysis within the

multiple cases. As units of analysis, we consider software practitioners that participate in the study; whereas as

cases the companies that these practitioners work for. The context of the study is the service-based software de-

velopment since all cases employ this development paradigm. The companies are anonymized due to an NDA,

but in Table 2, we list the country and the number of the units of analysis that they have contributed. In total the

study was comprised of 20 units of analysis. The main source of participants was the three (3) pilot providers of

the project, but to avoid bias, we have also included developers from various companies in Greece. In this re-

spect, they are considered as experts in the field, and their ability to judge industrial relevance was safeguarded.

The process for reaching this sample was initiated by first contacting their companies, who provided us with as

many engineers as possible, based on availability and time constraints. Then, after having an initial pool of par-

ticipants we selected individual engineers that work on SOA; with the aim to keep a balance between developers

and other roles, as well as between junior and senior engineers (see Figure 2). This balance was a goal of unit

selection to avoid bias and boost generalizability. We note that from the sample of subjects, we have removed

practitioners that have not used SmartCLIDE in their working routine, during the 15-days trial (e.g., because in

the end, they did not have time for this).

Table 2. Participating Companies Demographics

Country Participants Size

Luxemburg 6 Large Enterprise

Spain 3 Small-Medium Enterprise

Germany 4 Small-Medium Enterprise

Greece 7 Various

We note that all the involved companies (or isolated practitioners) have used the platform for a 15-day period

before the evaluation (December 2022). C1 used the platform for developing a pensioning system, C2 for com-

piling IoT applications from existing services, and C3 for developing a system that manages cloud infrastructure

on customer demand. The independent evaluators were employed by companies developing services for casino

games, banks, and retail websites.

Figure 2. Sample Demographics

4.3 Data Collection

To answer the research questions and given the fact that the SmartCLIDE platform has been recently released

(thereof participants did not have a prior experience with it), we have performed the data collection, upon a 15-

day trial. We note that this period could have not been expanded further, due to the limited budget of participat-

ing industries for the purpose of this study. In the beginning of this period, the participants got acquainted to the

platform through a video tutorial and were then asked to involve the platform in their development routines (us-

ing the source-code of their industrial projects) in the way that they perceive as most beneficial. Upon the com-

pletion of the trial period, we proceeded to data collection through a 1-day workshop. Data collection was com-

prised of two methods (2 surveys sessions and 1 focus group) aiming to achieve method triangulation for all re-

search questions. A mapping between the research questions and data collection methods is presented in Table 3.

Below, we discuss in detail each data collection method, and how it was applied for the purpose of our study. As

part of the workshop, the participants were asked to complete the task, described in Appendix B (Platform

Walkthrough), to be reminded with the basic platform capabilities, as well as to be more accurate in their an-

swers in the questionnaires, focus group, and usability assessment.

Table 3. Mapping of Data Collection Methods to Research Questions

 Survey-1 Survey-2 Focus Group

RQ1 X X

RQ2 X X

RQ3 X X

Survey-1: The first survey was aiming to collect data for answering RQ1 and RQ2. Each participant was provid-

ed with an online questionnaire5, focusing on the industrial relevance of the SmartCLIDE platform, its ability to

foster a reuse culture, and its contribution to cost reductions or quality improvement. To build the survey instru-

ment, we developed a 9-section questionnaire (one for each feature), and 3 questions per section (one for each

targeted impact—apart from usability), tailored to match the context of each feature, as shown below. The re-

sponses were provided on a 5-point Likert scale.

Do you consider <<FEATURE>> as relevant (i.e., applicable, and useful) for your company?

Do you believe that <<FEATURE>> can boost the extent of reusing services?

Do you think that <<FEATURE>> can contribute to time saving, increase in the quality of the solution, less

buggy code, or process improvement?

5 https://forms.gle/qh8JHgcFEKBmqgA39

Survey-2: This survey aimed at evaluating the usability of the SmartCLIDE platform. Similarly, to before, we

used an online questionnaire6 to get the responses of the participants. The questionnaire was structured based on

the System Usability Scale (SUS) (Brooke, 1996), which is one of the most well-known instruments for usability

assessment. Thus, the participants have been given the following statements to indicate their level of agreement,

in a 5-point Likert scale.

I think that I would like to use this system frequently

I thought this system was too inconsistent

I found the system unnecessarily complex

I felt very confident using the system

I thought the system was easy to use

I found the system very cumbersome to use

I think I would need the support of a technical person to be able to use this system

I would imagine that most people would learn to use this system very quickly

I found the various functions in this system were well integrated

I needed to learn a lot of things before I could get going with this system

Focus-Group: As a final means of data collection, we have performed 4 industrial focus groups (one for each

company). During the planning of the focus group (Kontio et al., 2004), we defined the goals: “to discuss: (a)

applicability / usefulness of the platform; (b) the benefits that can be obtained; and (c) usability issues”. Regard-

ing the design, each focus group was intended to last for 45’ (with each company—3 hours in total)7; and was

conducted using a tele-conferencing platform. The first 2 blocks were intended to last for 12 minutes, whereas

the last one was for approximately 10 minutes. While conducting the focus group the discussion was focused on

the topics outlined below. We note that in many cases, when there was an agreement among the participants, we

asked the remaining participants to only provide complementary or contradictory claims. The size of each focus

group was between 3-8 participants, which falls within the limit of effective focus group design, based on Kontio

et al. (2004).

Block 1: Industrial Relevance Assessment

- Can you explain to us the tasks that you have performed over the last period, using the SmartCLIDE features?

- Have you found these features useful in practice, and why?

Block 2: Benefits of using SmartCLIDE Framework

- Do you think that by using the SmartCLIDE features, you are more probable to reuse existing services?

- Can the use of SmartCLIDE reduce the time that you need for developing a cloud application? Why?

- Can the use of SmartCLIDE increase the quality of the final product? Why?

- Can the use of SmartCLIDE prevent the introduction of bugs in the final product? Why?

- Can the use of SmartCLIDE improve your process for developing a cloud application? Why?

- Do you see other benefits?

Block 3: Usability Assessment

How do you perceive the usability of the SmartCLIDE platform in terms of:

6 https://forms.gle/jWr3qDYQHUzZxjKu5
7 The focus groups with most of the companies lasted for approximately 1 hour, due to the input that we received from the participants.

Especially, regarding Blocks 1-3, the average discussion time was 15-20 minutes, depending on the company.

- Effectiveness (i.e., the accuracy and completeness with which users achieve specified goals)?

To what extent did you manage to complete the intended tasks?

How did you experience the navigability in the tool?

- Efficiency (i.e., the resources expended compared to the achieved goals)?

How much time did you spend per task?

 Was it more or less than the expected time needed based on your experience using the current process?

- Satisfaction (the comfort and acceptability of use)?

 How confident did you feel while using the system?

 Would you like to use this system frequently?

 How complex would you characterize the system?

 To what extent would you need the support to be able to use the system?

 How easy would you consider learning how to use the tool?

 What kind of background would you consider as mandatory before you get going with the system?

 How would you describe the experience in terms of the reactions of the system to possible stimuli?

- Have you faced any other usability issues?

At the end of this process, we thanked the participants for their time, we explained the next steps (i.e., transcribe,

analyse, report the results), and we asked them if they want to receive the results by mail. We note that the tran-

scriptions of the focus group, as well as the data obtained from questionnaires, have not been made available,

due to confidentiality reasons, and the signed NDA. The data collection instrument has been piloted with soft-

ware engineers, as part of a MSc course on Service-Based Software Development. The group of graduate stu-

dents involved in the piloting phase was not overlapping with the participants presented in Table 2. Upon pilot-

ing, based on the received feedback, as well as our experiences, we have finalized the data collection instrument,

as presented above.

4.4 Data Analysis

To validate the SmartCLIDE platform, we have used quantitative analysis for providing a synthesized overview

of the achieved impacts, and qualitative analysis for the interpretation of the results. To synthesize qualitative

and quantitative findings, we have relied on the guidelines provided by Seaman (1999). On the one hand, to ob-

tain quantitative results, we use the data obtained from the two surveys. To aggregate the ordinal values of the

Likert-scale we have summed the scores assigned by all participants to a specific question. For presentation pur-

poses, we used bar charts to visualize the sum score of responses for all participants. The maximum value in the

y-axis for each bar would be 100 points (20 respondents * maximum Likert-scale rating), for RQ1 and RQ2. The

closer the bar to the maximum, the higher the grade that the participants have assigned to the feature, for each

evaluation criterion (relevance and benefits). For usability, we provided the total SUS score, along with the most

common scales for interpretation, in terms of acceptance, adjective, and grade. The way that the usability score is

achieved through the SUS instrument is described by Brooke (1996). Next, we briefly describe the process: The

participants’ scores for each question (sometimes 5 is best, for others 5 is the worst, based on the nature of the

question) are converted to a number, added together, and then multiplied by 2.5 to convert the original scores (of

0-40) to a range from 0 to 100. Though the scores are limited to an [0, 100] range, the score is not a percentage

and should be considered only in terms of its percentile ranking. Based on the literature, SUS scores higher than

68 are considered above average and anything lower than 68 is below average (Brooke, 1996). On top of this, the

analysis of SUS results can be performed at specific questions’ level, to spot specific points that might yield im-

provement (e.g., question 7 aims on the self-explanatory power of the UI).

On the other hand, to obtain the qualitative assessments, we use the focus group data, which we have analysed

based on the Qualitative Content Analysis (QCA) technique (Elo and Kyngäs, 2008), which is a research method

for the subjective interpretation of the content of text data through the systematic classification process of coding

and identifying themes or patterns. This process involved open coding, creating categories, and abstraction. To

identify the codes to report, we used the Open-Card Sorting (Spencer, 2009) approach. Initially, we transcribed

the audio file from the focus group and analysed it along with the notes we kept during its execution. Then a

lexical analysis took place: in particular, we counted word frequency, and then searched for synonyms, and re-

moved irrelevant words. Then we coded the dataset, i.e., categorized all pieces of text that were relevant to a

particular theme of interest, and we grouped together similar codes, creating higher-level categories. The catego-

ries were created during the analysis process by both the first and the third author and were discussed and

grouped together through an iterative process in several meetings of all authors. The reporting is performed by

using codes (frequency table) and participants’ quotes. Based on Seaman (1999) qualitative studies can support

quantitative findings by counting the number of cases in which certain keywords occur and then comparing the

counts of different keywords or comparing the set of cases containing the keyword to those that do not.

5. Findings and Interpretation

In this section, we present the results of this study, organized by research question. In the narrative, we present:

(a) codes with capital letters; (b) the features of the platform in bold fonts; (c) participant quotes in italics; and

(d) in capital letters and with italic fonts, we denote the scales of the Likert questionnaires. As the basic means

for interpreting the results, we have preferred not to provide our own subjective interpretations, but to support

any claims with quotes of practitioners. The lessons learnt and implications to researchers and practitioners (i.e.,

our own interpretations) are discussed in Section 6.1.

5.1 Industrial Relevance

In Figure 3, we present the findings regarding the industrial relevance of the nine (9) features of the Eclipse

Open SmartCLIDE platform that we have evaluated. We present a bar chart with the sum of the score of each

feature in the Likert scale question on industrial relevance. Each feature got five (5) points for “VERY

RELEVANT” and one (1) point for “NOT RELEVANT AT ALL”. Given the fact that we had 20 respondents, the

maximum score that a feature could reach would be 100, if all respondents have evaluated as “VERY

RELEVANT”; thus, the vertical axis showcases the proximity of each service to the 100 points.

Figure 3. SmartCLIDE Features Industrial Relevance

Given this interpretation, we can deduce that all features have been positively assessed, especially considering

that the MODE values for Service Discovery, Workflow Summarization, Service Quality Assessment, and De-

sign Pattern Selection Assistant were “VERY RELEVANT”. For the rest of the features, the MODE value was

“RELEVANT”, and no feature scored lower than that. For the special case of Design Pattern Selection Assistant,

and the controversy of the results by using SUM and MODE, we can assume that some evaluators were very

positive, whereas others were neutral or slightly negative; however, the majority provided a positive vote. To

interpret and complement the findings with a qualitative analysis, we discuss the main findings by processing the

outcomes of the focus group. First, we need to note that the features that have been tested by the participants

before the start of the workshop were: Service Creation (75%), Service Composition (40%), and Service Dis-

covery (25%). For the rest of the features, the participants have not performed any related task beforehand. How-

ever, this finding does not seem correlated to their perception on industrial relevance.

The main arguments that the participants have used to champion the relevance of the Eclipse Open SmartCLIDE

are discussed below. The most important aspect (brought up by 80% of the participants in the focus group) was

the ALL IN ONE ability of SmartCLIDE, i.e., the ability to handle everything in a single platform, without the

need to change among tools and environments. As vividly explained by some stakeholders “SmartCLIDE ena-

bles you to have a variety of components ready-to-use in the workflows and overall has everything in one place”,

or “SmartCLIDE saves time programming and executing scenarios, because you can create services in the IDE

integrated, if needed you can re-discover services which you don't need to create again…”. Furthermore, 60% of

the participants, mentioned TIME SAVING as an important competitive advantage, obtained through reusing

services, through speeding up the design process (e.g., through the Design Pattern Selection Assistant), and hav-

ing everything in the same place. Additionally, it seems that an important percentage of the participants (40%)

considered as important for the adoption of the platform the “extra” functionalities that the platform brings (e.g.,

Design Patterns Assistant, Service Quality Assurance), beyond the must have ones (Service Composition, Ser-

vice Discovery, and Service Creation). Finally, a small percentage (15%) of the participants emphasised on the

usefulness and industrial relevance implied by RUNTIME MONITORING (“…have a clear image of what is

executed when running a workflow and it's easy to find where something has failed to execute, also you can see

whenever you want the values of the input / output parameters at the time of execution. This saves much time

because you might not need to search in logs…”) and provision of ABSTRACTIONS (“…at development stage

such as abstractions on data transformations or processing; at the testing stage, mechanisms to visualize flow

and status of artefacts to automatically test the expected behaviour; at the deployment stage, abstractions of

physical and virtual resources…”). However, the participants have complained on some missing features. The

most important missing feature, underlined by 20% of the participants, was the lack of integration with EXTER-

NAL REPOSITORIES which is characterised as a very handy option.

5.2 Obtained Benefits

In Figure 4, we provide a quantitative birds-eye view of the perceived benefits that each feature can bring to

SOA-based development. The method of representation is the donut-in-a-pie plot; an approach that can nest

several indicators for the same feature, in the same plot. In our case, we have developed one pie (per feature),

including five (5) donuts—one for every aspect that is being evaluated in a Likert scale (Survey #2). Similarly to

RQ1, a full donut would have been attributed to a feature that scores as “CERTAINLY” by all 20 participants

(100%) in the corresponding question on the anticipated type of improvement.

Service Discovery Workflow Summarization

Service Quality Assessment Service Creation

Test Generation Service Composition

Workflow Quality Assessment Design Pattern Selection Assistant

Deployment

Figure 4. SmartCLIDE Features Obtained Benefits

Figure 4 can be interpreted in two ways: (a) within-pie comparisons—to identify the quality aspects for which

the feature is deemed as more beneficial; and (b) cross-pie comparisons—to identify which feature is considered

as the most beneficial, with respect to a quality aspect of interest. For instance, by focusing on Service

Discovery, we can observe that it is considered as most beneficial in terms of BOOSTING REUSE and TIME

SAVING. Reading the figure, in the alternative way, we can deduce that if a team is interested in IMPROVING

PRODUCT QUALITY, they should invest on Test Case Generation and Service Quality Assessment.

Regarding the BOOSTING REUSE opportunities offered by SmartCLIDE, 90% of the respondents were positive

during the focus group. By far, the most mentioned feature regarding reuse was Service Discovery, followed by

Service Composition. It goes without saying that Service Discovery lies in the heart of the reuse mechanism of

SmartCLIDE, and this has been acknowledged by all participants. Even the ones that were not seeing substantial

benefits in reuse, have agreed that Service Discovery (if properly implemented) can drive reuse. On the other

hand, it seems that Service Composition has been promoted to an important feature, since it is the starting point

for reuse: i.e., you first need to decompose a system to functionalities properly, and then, you can start searching

for reusable components. Cumulatively, (for all features) BOOSTING REUSE has not proven to be the strongest

selling point of the Eclipse Open SmartCLIDE platform, with the only exception of Service Discovery, which

scored very high (70% of the respondents ranked the feature as “CERTAINLY” in the possibility to boost reuse).

In terms of TIME SAVING 100% of the respondents were positive in the focus group discussions (example

mini-quotes: “…with the services discovery module you can find services you might not need to create again…”,

“…automatic workflows help to reduce development time…”, “…because the deployment of the project happens

with one click…”, and “…it facilitates service reuse and removes friction in service configuration…”). The same

observation can be made through the Likert-scale assessment, since Service Creation, Service Discovery,

Service Composition, and Deployment scored more than 90%, and obtained a MODE value of “CERTAINLY” in

the possibility to reduce development time question. The Service Creation feature has been acknowledged to

hide the complexity of configuration; Service Discovery has been credited for saving time, due to reuse; Service

Composition saves time since it offers a drag and drop solution for composing services; whereas Deployment

(especially Workflow Deployment) can be fully automated through the platform.

With respect to IMPROVING PRODUCT QUALITY the discussions during the focus group were not that

enthusiastic, since 70% were obviously positive (“…if the quality assessment tools work as expected, the result

should be a product of better quality than before…”, “…the use of software design patterns is facilitated, and the

code is tested by auto-generated unit tests. Also, the whole workflow is demonstrated well, giving the chance for

evaluation and improvement…”); whereas others were more conservative (“…not sure. More complex scenario

is necessary to be confirmed about that…”). Through the quantitative analysis, Service QA, Workflow QA, and

Test Generation have been promoted to the most important features to safeguard product quality—with

approximately 40% of the respondents being “CERTAIN” for improving product quality with these features. At

this point, it deserves to be noted that this question despite targeting product quality (and having a different

question for bugs), in the end attracted tools to safeguard both the structural, as well as the functional views of

product quality. By comparing the results for service-level and workflow-level quality assessment, the results

pointed to the service-level as the most important one: probably due to the largest presence in the study setup of

developers, compared to architects or managers (who would be interested in more high-level quality viewpoints).

Regarding LESS BUGGY CODE, even though a larger majority of participants were positive (80%) the average

score was the lowest among all envisioned benefits, for the complete group of features (70%, MODE: 4). Even

the statements of the participants in the focus group were not as confident as the other envisioned benefits

(“…not sure based on the scenario that we tested…”, “…if used in conjunction with other tools…”).

Nevertheless, numerous positive remarks have been made, especially concerning Test Generation (87%) and

Workflow QA (83%). The main ways to get benefits in terms of bug reduction have been acknowledged to be:

(a) test automation; (b) increase of test coverage; (c) transparency in workflows execution; and (d) the improved

internal quality that can help writing more bug-free code.

Finally, PROCESS IMPROVEMENT has been unveiled to be the second most important benefit of using

SmartCLIDE (80% score, and a MEAN value of “CERTAINLY” in the possibility to improve the development

process). Although this was not originally the main advancement that we were targeting in the project, we cannot

claim that this finding was surprising, since the methodology and the toolchain are certainly standardizing the

development process, hiding many of the steps, reducing development time, and lowering the need for

configuration and multiple tools (as suggested by the participants of the study). Another very interesting

observation for this potential benefit is that all features contributed towards the quality score, showcasing a

standard deviation of 4% (when the next lower SD is 8% and the largest 12%)—also no feature scored lower

than 75% in this criterion. Workflow Summarization stood out, probably because it can help in understanding

the composition of services (i.e., the backbone of the SOA-based development), enabling communication

horizontally through the project phases and people.

5.3 Usability Assessment

By assessing the usability of the system, we obtained an average SUS score of 74, which is considered as

ACCEPTABLE, and can be interpreted, as presented in Figure 5. By analysing the answers to specific questions

(note that in the right part of Figure 5, we worked with the positive meaning of the question—i.e., many stars

declare user satisfaction), we have concluded that the most important usability weaknesses were: “User

Confidence”, “Integration”, and “Background Knowledge”. While in the focus group, we further dug into the

specific aspects of usability and discussed tentative issues with the participants. In the open discussion, the

participants shared with us that they were not very confident, and that they would require written documentation

to follow the task flow. The participants felt that there were many things to learn for the first time, but probably

the amount of new information needed would decrease after 2-3 weeks of regularly using the system. However,

despite the usability issues, all participants managed to finalize the task at hand, given the guidance of the video,

and all declared that they have spent less time than expected, for completing it. To explore the level of agreement

among the raters, we have performed the non-parametric test Kendall W, which unveils the level of agreement in

the rating of all participants, cumulatively for all the SUS questions. The outcome of the test (W: 0.61 with

p<0.01) suggest a strong agreement among the respondents of the SUS questionnaire.

Analysis per SUS Question

Figure 5. Eclipse Open SmartCLIDE Platform Usability Assessment

6. Discussion

6.1 Lessons Learnt: Implications to Researchers and Practitioners

The main lessons-learnt from this user study can be decomposed to two parts: (a) the weak and strong points of

the framework that can lead to interesting implications to researchers; and (b) the perceived benefits of the

SmartCLIDE framework per feature—that can lead to implications to practitioners.

Implications to Researchers: Based on the findings of the study, we can claim that SmartCLIDE has brough

some important advancements to the state-of-practice on SOA-based application development, but has also left

some problem as partially solved, yielding for additional research opportunities. First, through the evaluation we

can claim that the motivation to develop an end-to-end methodology / platform that would combine all steps of

the process in a single place, was a successful decision. Thus, we advise researchers of similar future endeavors

to integrate their solutions in existing workspaces (e.g., IDEs) to gain similar benefits as we did from the

SmartCLIDE adoption into the Eclipse ecosystem (Che, Theia, etc.). Additionally, we can consider that the goal

of shrinking development time and effort in SOA-based systems was successful, and the produced approaches

can be employed in future research. Finally, we advise researchers to also evaluate possible improvements in the

software development process, and not only focus on the core aspects of quality, such as bugs and structure.

On the other hand, the evaluation has also unveiled several limitations that as a consortium we retain as future

work, but also point to useful implications to other researchers. First, we need to acknowledge that the proposed

end-to-end framework has only partially achieved the goal of improving reuse. More specifically, the framework

boosted reuse through Service Discovery and Service Composition; however, we cannot claim that the side tools

had showcased a similar success. In that sense, we believe that future research can focus on proposing novel

approaches for enhancing reuse: e.g., AI-based suggestions for service composition, proposal of next steps of a

workflow, based on similarity, etc. Moreover, the design pattern selection assistant can be promoted to a

mechanism for reusing design rationale in the domain of SOA-based development. Furthermore, the solutions

offered by the platform did not manage to persuade the developers on the reduction of bugs, apart from Test

Case Generation. However, we believe that Service Creation can yield important benefits in this aspect, in the

sense that it aids in preventing configuration mishaps. In that sense, we believe that a longitudinal study that

explores the effect of automated Service Creation would be beneficial. Finally, in terms of future work, we

believe that despite the positive evaluation of quality assessment, further research can be performed both at the

service, as well as the workflow level.

Implications to Practitioners: Based on the evaluation of the individual features, we can advise practitioners to

use the following features of SmartCLIDE, based on their quality goals. We note that although each feature can

be useful in multiple aspects, in Figure 6, we present only the most striking benefits of each feature. Therefore,

we can advise practitioners to use Service Quality Assessment and Workflow Quality Assessment, only if they

want to impose a quality assurance process. Similarly, the Test Generation feature is considered relevant, and we

recommend its use when product and process improvement are of interest. On the other hand, regarding time

savings the most core features have been identified as the most relevant: Service Creation, Service Composition,

Design Patterns Selection Assistant, Workflow Summarization, Service Discovery, and Deployment. Out of

these features, some are having as side benefits reuse or process improvement. We note that these implications

can be transferred outside SmartCLIDE in the sense that alternative tools that can be used for similar purposes

can have similar results. For example, finding service directly through the ProgrammableWeb interface can also

bring benefits in terms of time saving. However, we need to note that the empirical evidence that we bring

correspond only to the SmartCLIDE implementation.

Figure 6. Features Evaluation for Practitioners

6.2 Threats to Validity

Construct Validity. The first threat to construct validity may stem from partial knowledge of platform

capabilities to provide an informed assessment. To mitigate this threat, we conducted a 1-day workshop on the

platform and asked the participants to use the SmartCLIDE for a period of 15-days before performing the

evaluation. Another threat is that practitioners may misinterpret the questions in both Survey #1 and #2. We

mitigated this threat by using a structured questionnaire. In Survey #1 (for RQ1 and RQ2), the questions were

precise and asked for the information we intended to learn about each feature. That said, we acknowledge this

decision allows for framing bias, priming the participants to provide a positive evaluation. We mitigated this by

explicitly informing participants about framing bias and asking them to reflect on their answers. We also

informed them that a perceivably negative evaluation is also valuable to the project, so they should not feel

compelled to provide an opinion they disagree with. In Survey #2, we used a well-established survey instrument

for usability (SUS) and provided the same clarification on framing bias and priming. We also sought to mitigate

mentioned threats via the focus group, which allowed us to revisit the questionnaire topics framed from a

different perspective and investigate the output of the questionnaires in depth.

External Validity. The generalizability of our validation is threatened by the sample size of the study. On the

one hand, a larger sample could provide a more representative portion of the population of interest. To mitigate

this threat, we ensured the representatives of the main industrial stakeholders. Also, to the best of our knowledge,

these companies and application domains, although not encompassing all industries, do represent common cases

that exploit SOA. That said, to complete these, we also involved practitioners working on other application

domains (e.g., games, banks, and retail websites). Additionally, we note that our analysis is purely qualitative,

and is not threatened from the sample size, since statistical hypothesis testing is not performed.

Reliability. The open coding process is subject to bias from the researchers. To mitigate this threat, we have

used a systematic approach to coding and provided as much detail of the process as possible. We note that peer

review was extensively used in the coding process and for verifying the various data analyses performed for the

study. Finally, to avoid a confirmation bias of industrial relevance due to the participation of pilot providers, we

also included seven practitioners (35% of the sample) from outside the project.

7. Conclusions

In this paper, we presented the SmartCLIDE framework for facilitating service reuse in cloud development. The

framework aims to enable developers to boost the reuse of services at three levels: in-house reuse, domain-

specific reuse, and domain-agnostic reuse. This goal was achieved by developing six main features and

integrating them into a single platform, which is an extension of Eclipse Che and the Eclipse Theia IDE. The

features are: (a) service composition; (b) workflow summarization; (c) service discovery; (d) service creation

and deployment; (e) design patterns selection assistant; and (f) workflow quality assessment and service quality

assessment. Although some features have been validated independently in previous studies, this study aimed to

validate the framework end-to-end in terms of industrial relevance, benefits, and usability. To this end, we

conducted an embedded multiple-case study with 20 practitioners. Participants were trained to use SmartCLIDE

and worked with the platform for 15 days. After that, the practitioners answered two surveys and participated in

a focus group to evaluate SmartCLIDE and its features. The results of the study showed that the framework is

effective and efficient in facilitating service reuse in cloud development. The framework is currently being used

in the three companies that also provided pilots to the project and is publicly available on the project website.

Acknowledgements

Work reported in this paper has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 871177 (project: SmartCLIDE).

References

Alizadehsani., Z. et al., "Service Classification through Machine Learning: Aiding in the Efficient Identification

of Reusable Assets in Cloud Application Development," 48th Euromicro Conference on Software Engineer-

ing and Advanced Applications (SEAA’22), Gran Canaria, Spain, 31 August – 02 September 2022.

Baldassarre, M. T., Bianchi, A., Caivano, D. and Visaggio, G., “An industrial case study on reuse oriented de-

velopment”, 21st IEEE International Conference on Software Maintenance (ICSM’05), 25 – 30 September

2005.

Bianchini, D., De Antonellis, V. and Melchiori, M., “Services discovery and recommendation for multi-

datasource access: Exploiting semantic and social technologies”, Studies in Big Data, 31, pp. 375-390,

2018.

Blal, R. and Leshob, A., “A Model-Driven Service Specification Approach from BPMN Models”, 14th Interna-

tional Conference on E-Business Engineering (ICEBE 2017), Shanghai, China, 04-06 November 2017.

Brinkkemper, S., Jansen, S., Demir, C. and Hunink, I., “Pragmatic and opportunistic reuse in innovative start-up

companies,” IEEE Software, 25(06), pp. 42–49, 2008.

Brooke, J. “System Usability Scale (SUS): A quick-and-dirty method of system evaluation user information”, in

P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. McClelland (Eds.), Usability evaluation in industry (pp.

189-194), Taylor & Francis, 1996.

Capiluppi, A., Boldyreff, C. and Stol, K.-J., “Successful reuse of software components: A report from the open

source perspective,” Open Source Systems: Grounding Research, S. A. Hissam, B. Russo, M. G. de Men-

donc¸a Neto, and F. Kon, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 159–176.

Chen, H., Wu, H., Li, J., Wang, X. and Zhang, L, “Keyword-Driven Service Recommendation Via Deep Rein-

forced Steiner Tree Search”, IEEE Transactions on Industrial Informatics, 19 (3), pp. 2930-2941, 2023.

Dai, F., Chen, H., Qiang, Z., Liang, Z., Huang, B. and Wang, L., “Automatic analysis of complex interactions in

microservice systems”, Complexity,pp.1-12 2020.

Digkas, G., Nikolaidis, N., Ampatzoglou, A. and Chatzigeorgiou, A., “Reusing code from stackoverflow: The

effect on technical debt,” 45th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA’19), Kallithea-Chalkidiki, Greece, 28-30 August 2019.

Djogic, E., Ribic, S. and Donko, D., “Monolithic to microservices redesign of event driven integration platform”,

41st International Convention on Information and Communication Technology, Electronics and Microelec-

tronics (MIPRO), Opatija, Croatia, 21-25 May 2018.

Elo, S. and Kyngäs, H., “The qualitative content analysis process”, Journal of Advanced Nursing, 62 (1), pp.

107-115, 2008.

Elqortobi, M., Bentahar, J. and Dssouli, R., “Framework for Dynamic Web Services Composition Guided by

Live Testing”, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering, LNICST, 206, pp. 129-139, 2018.

Johnson, B., “The benefits of service oriented architecture”, Objectsharp Consulting, 2004.

Kontio, J., Lehtola, L., and Bragge, J., “Using the focus group method in software engineering: obtaining practi-

tioner and user experiences”, International Symposium on Empirical Software Engineering, pp. 271–280,

Redondo Beach, CA, 2004.

Kotsikoris, P., Chaikalis, T., Ampatzoglou, A. and Chatzigeorgiou, A., “Automated Summarization of Service

Workflows to facilitate Discovery and Composition”, 17th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE’22), Online Streaming, 25-26 April 2022.

Krueger, C. W., “Software reuse,” ACM Computing Surveys (CSUR), 24(2), pp. 131–183, 1992.

Lampropoulos, A., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A. and Stamelos, I., “React - a process for im-

proving open-source software reuse,” 11th International Conference on the Quality of Information and

Communications Technology (QUATIC’18), 2018.

Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H. and Li, Z., “December. Microservices: architecture, container,

and challenges”, 20th International conference on software quality, reliability and security companion

(QRS-C), Macau, China, 11-14 December 2020.

De Lauretis, L., “From monolithic architecture to microservices architecture”, International Symposium on Soft-

ware Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27-30 October 2019.

Mahmood, Z., “Service oriented architecture: potential benefits and challenges”, 11th WSEAS International Con-

ference on Computers, 2007.

Maikantis, T., Chaikalis, T., Ampatzoglou, A. and Chatzigeorgiou, A., “SmartCLIDE: Shortening the Toolchain

of SOA-based Cloud Software Development by Automating Service Creation, Composition, Testing, and

Deployment”, 25th Pan-Hellenic Conference on Informatics (PCI’21), November 2021.

Masood, T., Cherifi, C. and Moalla, N., “Service Recommendation Model based on Service Composition Net-

works Monitoring”, 12th International Conference on Software, Knowledge, Information Management &

Applications (SKIMA), Phnom Penh, Cambodia, 03-05 December 2018.

Nikolaidis N., Ampatzoglou A., Chatzigeorgiou A., Tsekeridou S., and Piperidis A., "Technical Debt in Service-

Oriented Software Systems", 23rd International Conference on Product-Focused Software Process Im-

provement (PROFES '22), Springer, Finland, 21-23 November 2022.

Polyzoidou, E., Papagiannaki, E., Nikolaidis, N., Ampatzoglou, A., Mittas, N., Arvanitou, E. M., Chatzigeor-

giou, A., Manolis, G. and Manganopoulou, E., “SmartCLIDE design pattern assistant: A decision-tree

based approach”, Journal of Software: Practice and Experience, Wiley, February 2023.

Raj, V. and Srinivasa Reddy, K., “Best Practices and Strategy for the Migration of Service-Oriented Architec-

ture-Based Applications to Microservices Architecture”, 2nd International Conference on Advances in

Computer Engineering and Communication Systems: ICACECS’21, Hyderabad, India, 22 February 2022.

Seaman, C., “Qualitative Methods in Empirical Studies of Software Engineering”, IEEE Transactions on Soft-

ware Engineering, 25 (4), pp. 557–572, 1999.

Singh, V. and Peddoju, S.K., “Container-based microservice architecture for cloud applications”, International

Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 05-06 May

2017.

Snook, C. F., Butler, M. J., Edmunds, A. and Johnson, I., “Rigorous development of reusable, domain-specific

components, for complex applications,” International Workshop on Critical Systems Development with

UML (CSDUML’04), Lisbon, Portugal, 2004.

Spencer, D., “Card Sorting: Designing Usable Categories”, Rosenfeld Media, 1st edition, April 2009.

Turner, M., Budgen, D. and Brereton, P., “Turning software into a service,” Computer, 36(10), pp. 38–44, 2003.

M. Usman, D. Badampudi, C. Smith and H. Nayak, "An Ecosystem for the Large-Scale Reuse of Microservices

in a Cloud-Native Context," IEEE Software, vol. 39, no. 5, pp. 68-75, Sept.-Oct. 2022

Wang, J., Yu, J., Falcarin, P., Han, Y. and Morisio, M., “An approach to domain-specific reuse in service-

oriented environments,” High Confidence Software Reuse in Large Systems, H. Mei, Ed. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2008, pp. 221–232.

Xu, X., Motta, G., Tu, Z., Xu, H., Wang, Z. and Wang, X., “A new paradigm of software service engineering in

big data and big service era,” Computing, vol. 100, pp. 353–368, 2018.

Yang, H., “Software reuse in the emerging cloud computing era”, IGI Global, 2012.

Zhao, K., Liu, J., Xu, Z., Liu, X., Xue, L., Xie, Z., Zhou, Y. and Wang, X., “Graph4Web: A relation-aware graph

attention network for web service classification”, Journal of Systems and Software, 190, 2022.

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W. and Ding, D., “Fault analysis and debugging of microservice

systems: Industrial survey, benchmark system, and empirical study”, Transactions on Software Engineer-

ing, 47 (2), pp.243-260, 18 December 2018.

