

Every effort has been made to ensure that all statements and information contained herein are accurate,

however the SmartCLIDE Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the SmartCLIDE Project Partners.

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 871177

Deliverable D1.5

The SmartCLIDE Architecture

WP 1

Project Acronym & Number: SmartCLIDE – GA 871177

Project Title:

Smart Cloud Integrated Development Environment

supporting the full-stack implementation, composition

and deployment of data-centered services and

applications in the cloud

Status: Final

Dissemination Level: Public

Authors: INTRA

Contributors: ALL PARTNERS

Document Identifier: SmartCLIDE-D1.5 Architecture v1

Date: 09.11.2020

Revision: 1.0

Project website address: https://smartclide.eu

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 2

 Confidentiality: Public

Partner Contacts

Institut für angewandte Systemtechnik Bremen GmbH (ATB), Germany

Intrasoft International SA (INTRA), Luxembourg

Fundacion Instituto Internacionale de Investigacion en Intelligencia Artificial y Ciencias de

la Computacion (AIR), Spain

University of Macedonia (UoM), Greece

Ethniko Kentro Erevnas Kai Technologikis Anaptyxis (CERTH), Greece

X/OPEN Company Limited (TOG), United Kingdom

Eclipse Foundation Europe GMBH (ECLIPSE), Germany

Wellness Telecom SL (WT), Spain

Unparallel Innovation LDA (UNP), Portugal

CONTACT Software GmbH (CONTACT), Germany

Kairos Digital, Analytics and Big

Data Solutions SL (KAIROS DS), Spain

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 3

 Confidentiality: Public

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Document Control

Version Notes Date

0.1 Creation of the document 25/08/2020

0.2
Initial contributions and architectural diagrams by INTRASOFT, partner

contribution assignments
18/09/2020

0.3 Update of the ToC and partner assignments, initial partners contributions 07/10/2020

0.8
Update of architectural diagrams and descriptions, further partner

contributions
30/10/2020

0.9 Alignment of descriptions, finalization for internal review 31/10/2020

1.0 Internal review, finalization for formal submission 09/11/2020

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 4

 Confidentiality: Public

Abbreviations

AB Advisory Board

AI Artificial Intelligence

API

Application

Programming

Interfaces

App Software Application

APM
Adaptive Project

Management

BFF Backend for Frontends

BPMN
Business Process

Model and Notation

D Deliverable

DLE Deep Learning Engine

DoA Description of Action

EA Ethical Adviser

PB Plenary Board

EC European Commission

e.g.
exempli gratia = for

example

etc. et cetera

EU European Union

FP7
Framework

Programme 7

GA Grant Agreement

GDPR
General Data

Protection Regulation

ICT

Information and

Communication

Technology

i.e. id est = that is to say

IP Intellectual Property

IPR
Intellectual Property

Rights

LAN Local Area Network

JSON
JavaScript Object

Notation

KPI
Key Performance

Indicator

M Month

PB Plenary Board

PC Project Coordinator

PQA
Project Quality

Assurance

QA Quality Assurance

QoS Quality of Service

REST
REpresentational State

Transfer

RPI
Remote Procedure

Invocation

RTD

Research and

Technological

Development

SME
Small and Medium

Sized Enterprise

SC Steering Committee

SOAP
Simple Object Access

Protocol

STQA

Scientific and

Technical Quality

Assurance

T Task

UI User Interface

UML
Unified Modeling

Language

VoIP Voice over IP

WP Work Package

WPL Work Package Leader

WPMT
Work Package

Management Team

w.r.t. with respect to

http://www.bpmn.org/
http://www.bpmn.org/

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 5

 Confidentiality: Public

Executive Summary

This document presents the architecture of the SmartCLIDE system. It is the result of

the design process, strongly dependent on and complementing the defined

SmartCLIDE requirements, use cases and conceptual design of its components.

Consequently, taking into account both the results of requirements, the specified set of

system use cases and pilot scenarios that captured in detail how the envisioned

SmartCLIDE system will offer its functionality to the users, and the envisioned

technical innovations of the SmartCLIDE system as outlined in its conceptual design,

this document focuses on detailing the component-based architecture, the information

flows and component interactions view, as well as the deployment architecture of

SmartCLIDE. The architecture description is also complemented by the delivery plan

of the system - the approach to be used and a time plan for the delivery of the system

with specific phases and milestones has been included in the delivery plan.

All the aforementioned content has been structured following the concept and terms

of the ISO/IEC/IEEE 42010:2011, “Systems and software engineering — Architecture

description” standard. Although this document does not fully comply with the

standard’s requirements, the use of the principles included in the standard increases

the standardization of the architecture description and the readability of the document

itself. It must be noted that the design process and architecture specification of the

system is an ongoing process that will continue in the next phases of the project on the

light of new deliverables that are due in the months to follow. Thus, even though the

current document, along with D1.3 and D1.4, is a starting point for the specification

of the system, modifications will apply in the course of the project in order to record

the evolving requirements and the corresponding changes in the architecture

specification, following an agile development approach.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 6

 Confidentiality: Public

Table of Contents

1 Introduction .. 8

1.1 Document Purpose ... 8

1.2 Approach .. 8
1.2.1 The Microservices architectural approach .. 9

1.3 Document Structure .. 10

1.4 Relationship to other Deliverables ... 10

1.5 Contributors .. 10

2 Architecture Views ... 11

3 SmartCLIDE Conceptual System Architecture – Operational view ... 12

4 SmartCLIDE Information Flow View .. 13

4.1 Information Flows – Communication Diagram ... 13
4.1.1 Discovery of Services and Resources ... 17
4.1.2 Service Creation, Composition and Testing ... 18
4.1.3 Security ... 19
4.1.4 Runtime Monitoring and Verification .. 20
4.1.5 Runtime Simulation & Monitoring / Visualisation ... 21
4.1.6 Deep Learning ... 22
4.1.7 Context Handling .. 23
4.1.8 Smart Assistants .. 24
4.1.9 Services Deployment .. 26
4.1.10 API Gateway ... 26
4.1.11 Message Oriented Middleware ... 26

5 System Deployment View ... 28

5.1 Deployment at Pilots .. 30
5.1.1 PERSEUS Pilot – INTRASOFT International .. 30
5.1.2 Real-time Communication Platform Pilot – Wellness Telecom SL ... 34
5.1.3 IoT-Catalogue IDE – UNPARALLEL Innovation, LDA ... 40
5.1.4 CONTACT Elements for IoT – CONTACT Software GmbH ... 43

6 System Delivery Plan .. 47

6.1 Software Engineering Approach .. 47
6.1.1 Principles and Validation of the SmartCLIDE solution .. 47
6.1.2 Methodology: Adaptive Project Management approach .. 47
6.1.3 Waterfall approach .. 48
6.1.4 Agile approach .. 48

6.2 Implementation Schedule ... 49

7 Conclusions.. 53

References .. 54

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 7

 Confidentiality: Public

List of Figures

Figure 1: Monolithic vs Microservices architecture conceptualization (found also in D1.1) 9

Figure 2: Component-based SmartCLIDE Architecture ... 12

Figure 3: SmartCLIDE Information Flows – Communication Architecture – Simplified Version 15

Figure 4: SmartCLIDE Information Flows – Communication Architecture – Full Version 16

Figure 5: Runtime Monitoring & Verification Information Flow .. 20

Figure 6: SmartCLIDE Deployment Architecture .. 29

Figure 7: PERSEUS Current Deployment View .. 30

Figure 8: The Continuous Integration Lifecycle ... 31

Figure 9: Continuous Integration & Continuous Delivery process ... 34

Figure 10: Real-time Communication Platform .. 35

Figure 11: Real-time Communication Platform Components .. 37

Figure 12: Real-time Communication Platform Architecture ... 39

Figure 13 - Overview of the current deployment of IoT-Catalogue components 40

Figure 14 - Overview a future deployment with SmartCLIDE components integrated in IoT-Catalogue

infrastructure .. 42

Figure 15: Development Process Flow ... 44

Figure 16 SmartCLIDE Development Roadmap .. 50

List of Tables

Table 1: Discovery of Services and Resources cross-component interfaces. ... 17

Table 2: Service creation, Composition and Testing cross-component interfaces. 18

Table 3: Security cross-component interfaces. ... 19

Table 4: Runtime Monitoring & Verification cross-component interfaces. ... 21

Table 5: Runtime Simulation & Monitoring / Visualisation cross-component interfaces. 22

Table 6: Deep Learning engine cross-component interfaces. ... 23

Table 7: Context Handling cross-component interfaces. .. 24

Table 8: Smart Assistants cross-component interfaces. .. 25

Table 9: Services Deployment cross-component interfaces. .. 26

Table 10: Components using MoM. ... 30

Table 11: Collection of the system entities ... 36

Table 12: Network - scalability requirements ... 38

Table 13: SmartCLIDE Development Roadmap .. 51

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 8

Confidentiality: Public

1 Introduction

1.1 Document Purpose

Deliverable D1.5 “The SmartCLIDE Architecture” is part of WP1 and is produced as

the main outcome of Task 1.5: Design of SmartCLIDE Architecture. The purpose of

this document is to provide an architectural design of the SmartCLIDE platform, from

different architectural viewpoints, that have not yet been covered by other WP1

Deliverables, based on the outcomes of the other WP1 Deliverables, and more

specifically D1.2: “Requirements Analysis”, D1.3: “Use Case Scenarios” and D1.4:

“The SmartCLIDE Concept”.

1.2 Approach

A micro services-oriented architecture is envisioned following a Service Oriented

Modelling approach. It will allow deployment of services in containers within the

cloud, composed of horizontal services (Deep Learning Engine, Back-end features like

micro-services storage and discovery with knowledge search engine, data persistence,

or user management, as well as system security) as well as vertical services

(Development, Testing, Deployment and Runtime simulation).

Service-oriented modelling (SOM) is a discipline on top of which several popular

approaches for modeling business and software systems have been arisen. Its purpose

is to design service-oriented business systems without limited to a specific domain or

architectural style. Examples include microservices, cloud computing and the more

traditional application architecture, service-oriented architecture, and more.

SOMF is used to create models though-out all the Software Development “phases”,

from analysis to design and architecture and embraces the simplicity of the

representation that it provides, which is ideal for individuals with diverse level of

business and technical background. All Service-oriented modeling approaches

typically include a modelling language that can come from both the “problem domain

organization” and the “solution domain organization”. It acts as a “reference” for the

involved parties to enhance the strategy that is to be followed from the analysis phase.

The SmartCLIDE architecture specification will combine several established

architectural and modeling approaches by leveraging the foundations, principles and

disciplines of service-oriented modeling. This will result in a hybrid model that will

describe the reference architecture (conceptual or logical where applicable) for all

defined Architectural Views. Architecture diagrams will also be presented including

Component / Composite Structure, Information / Data Flows and Deployment

diagrams, taking input from the component design specifications in D1.4: “The

SmartCLIDE concept”.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 9

Confidentiality: Public

1.2.1 The Microservices architectural approach

As an alternative to the somewhat traditional Monolithic architectural approach for

developing applications, which under certain conditions can still remain a good choice,

the Microservices architectural approach represents an option which not only

addresses limitations and issues of the former, but also is a good fit for large and

complex applications.

The Microservices approach achieves this by adopting a strategy of putting together a

large and complex application from small individual building blocks. These are

distinct components that perform a specific function, examples of which include,

among others, processing of data, login services and persistence of information. These

individual and discrete components (microservices) can be considered as separate

software components which have their own code and resources. The entire

functionality of the system is therefore realized and composed by the microservices

available, which work together as a whole, communicating among them and clients of

the system to fulfil requests.

Figure 1: Monolithic vs Microservices architecture conceptualization (found also in D1.1)

The overall aim is to structure an application as a collection of services that are: highly

maintainable and testable, loosely coupled, independently deployable, organized

around business capabilities and each owned by a small team. It is expected that each

small service is running in its own process and communicates with other services and

clients using lightweight mechanisms such as well-defined HTTP resource APIs (web

services). These APIs frequently and depending on the case employ authenticated and

encrypted communications that follow the RESTful paradigm (further discussed in

later sections of this document). The services are implemented in ways that allows for

them to be deployed independently from each other while always having in mind fully

automated deployment approaches such as CI/CD. This particular approach further

allows for minimum centralized management of the available services that can also be

implemented by different teams, using different programming languages and

potentially employ different data storage approaches if necessary.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 10

Confidentiality: Public

1.3 Document Structure

The deliverable consists of the following sections:

▪ Section 2 describes the different views of a System Architecture, detailing which

views have already been presented in other WP1 Deliverables, namely, D1.2:

“Requirements Analysis”, D1.3: “Use Case Scenarios” and D1.4: “The

SmartCLIDE Concept”, and which are to be presented in the current Deliverable

▪ Section 3 presents the Conceptual / Component-based Architecture diagram in

detail

▪ Section 4 presents the Information Flows / Communication Architecture

diagram, along with an initial definition of the envisioned component interfaces

and exchanged messages with other interfacing components

▪ Section 5 presents the System Deployment Diagram, providing also details as to

the current deployment contexts of the envisioned SmartCLIDE pilots

▪ Section 6 presents the SmartCLIDE System Delivery Plan along with the

methodology to implement it.

▪ Section 7 outlines the conclusions.

1.4 Relationship to other Deliverables

The present Deliverable completes the design and architecture specification of the

SmartCLIDE platform from all design and architecture viewpoints, together with

D1.2, D1.3 and D1.4. Essentially it receives inputs from all these Deliverables and

primarily from D1.4, while it provides inputs, along with D1.2, D1.3 and D1.4, to the

subsequent implementation tasks in WP2 and WP3.

All the aforementioned Deliverables content has been structured following the concept

and terms of the ISO/IEC/IEEE 42010:2011, “Systems and software engineering —

Architecture description” standard. Although this document does not fully comply

with the standard’s requirements, the use of the principles included in the standard

increases the standardization of the architecture description and the readability of the

document itself.

1.5 Contributors

All technical partners contributed significantly to the design process. We also received

contributions from use case partners in terms of current deployment best practices.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 11

Confidentiality: Public

2 Architecture Views

Views define the various perspectives from which the system must be described in

order to provide a complete architecture description to the stakeholders of the project.

As such each view of the system is the actual representation of the system from that

perspective. In other words, the view can be explained as a “where the system is been

looked from”/”how the system looks from there” pair. The architectural views are

multiple, with the most significant being the following, some of which have already

been addressed in Deliverables D1.2, D1.3, and D1.4, while the rest are presented in

the current Deliverable:

▪ Functional requirements view: this view should describe the functional

specification of the various components of the system. A list of non-functional

requirements could also be presented in such a view. The Functional

requirements views have already been collected, analyzed and detailed in D1.2:

“Requirements Analysis” and mapped also to SmartCLIDE System Use cases in

D1.3: “Use Case Scenarios”.

▪ Components specification view: this view presents the detailed description of

each component of the system. Each description includes the components role

in the system, its internal design, quality attributes and APIs or User interfaces

if applicable. This view has already been presented in D1.4: “The SmartCLIDE

Concept”.

▪ Operational environment view: this view describes the conceptual way the

system operates in its designated context, the components that comprise the

system, where these components are deployed and the user groups with which

they interact. These have already been detailed in D1.3 and D1.4. A more

detailed depiction of the conceptual/logical architecture, in terms of a

Component Architecture Diagram of SmartCLIDE is also further included in

this Deliverable.

▪ Information flow view: this view defines the information entities handled by

the system as well as the corresponding relationship between them. It also

includes the flows (exchange) of the information between the system users and

its components as well as between the components themselves. This view will

be described in the present Deliverable.

▪ System deployment view: this view will present the deployment view of the

integrated system and, per each pilot, the current approach and available

infrastructure.

▪ Delivery view: this view will describe a delivery time plan for the delivery of

the components and for the platform as a whole, along with a description of the

approach for its implementation.

Concluding, given that architecture and design specifications from different views

have in part already been presented in other WP1 SmartCLIDE Deliverables (D1.2,

D1.3, D1.4), this Deliverable (D1.5) will present in detail only the conceptual/logical

architectural view, the information flows/communication view, the deployment view

and the delivery plan.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 12

Confidentiality: Public

3 SmartCLIDE Conceptual System Architecture – Operational view

This section presents the interactions among SmartCLIDE modules in the form of a

UML component diagram. The majority of SmartCLIDE activities take place at the

Service Composition and Testing (SCTM) module where users search, select and

compose services from different sources. In other words, this module hosts the “service

laboratory” where new business flows are developed in the special business flow

canvas with the help of the embedded Process Engine. Therefore, it is also the only

responsible module for the Visualization, Simulation, Testing and Deployment of

services because the application format can only be executed by the Process Engine

which exists only in SCTM. For the discovery of existing services, the SCTM depends

on the Service Discovery (SDM) component, as shown in Figure 2.

Figure 2: Component-based SmartCLIDE Architecture

The creation of new services is the responsibility of the Service Creation - IDE (IDE)

module. The services need to be containerized first. Therefore, the source code passes

through the CI/CD module where also Quality Assurance, as well as filtering and

security analysis (by the Security Handler module - SECM) are applied. If all

necessary QA and Security requirements are met, the service image is created and

pushed into the Service Registry (SREGM) which acts as the feed for the Service

Discovery.

Activity regarding all used services is been constantly fed to the Deep Learning Engine

Module (DLEM) which is being trained facilitated by the Context Discovery (CDM).

Both the creation and composition of services get recommendations provided by the

Smart Assistant Module (SAM) which materializes the knowledge created from the

Deep Learning Engine.

Regarding the inter-module communication means, to ensure a decoupled, scalable

and fault-tolerant approach, a Message Oriented Middleware will be used for one-to-

many or many-to-many communication needs.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 13

Confidentiality: Public

4 SmartCLIDE Information Flow View

4.1 Information Flows – Communication Diagram

This section presents the information flow view for the core components of the

SmartCLIDE platform in a simplified form (Figure 3) for readability purposes, as a

UML Information Flow diagram. This view focuses both on the component-to-

component interactions and on user-to-system ones. The exchange method of the

information between components is not depicted and it may vary between various

components.

Following Requirements Analysis presented in D1.2, Use Case Scenarios definition

presented in D1.3 and Concept presented in D1.4, SmartCLIDE can be described as a

platform composed by 3 major high-level components:

1. SmartCLIDE User Interface

2. SmartCLIDE Back-end Services

3. 3rd party Solutions/Infrastructure interacting with SmartCLIDE through API

Interfaces

The first two can be further decomposed in the sub-components which are the core

SmartCLIDE platform components and are described below. For some of these core

components more details can be found about their internal information flow and how

this impacts the overall flow of the system.

As SmartCLIDE platform consists of multiple components that need to interact with

each other and require different information exchange methods, protocols for

communication, data formats, etc. certain architectural patterns have to be applied for

the ease of design, implementation, maintenance and further improvements.

Two main scenarios need to be satisfied, that of course can be further decomposed.

The first scenario requires Back-end Services or any other internal component to

expose their APIs to User Interface components, or any other actor outside the internal

system. The second scenario requires Back-end Services or any other internal

component to interact with each other. As these two general scenarios are based on

different requirements, demand a different design approach.

For the first scenario, API Gateway pattern is applied. A component acts as the single-

entry point for the User Interface components or external actors. The API gateway

handles requests in one of two ways. Some requests are simply proxied / routed to the

appropriate service or others are handled by fanning out to multiple services. In this

component, all functionalities related to an API Gateway take place. Routing, data

transformation, load balancing (where applicable), protocol transformation, security

(authentication/authorization/token flows), etc. are provided. The typical API Gateway

pattern is applied, without limiting for future updates to adapt a more flexible variation

of the pattern like BFF (Backends for frontends) by defining separate API Gateways,

if there is a requirement to further decompose communication flows. By applying this

pattern, repetitive actions are performed in a central place and with respect to

Consumer Driven Contracts principle, apply all the data transformation required in a

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 14

Confidentiality: Public

common manner limiting the need for adapters on the component level. As such,

SmartCLIDE IDE can get access to all data required from the underline system.

For the second scenario, internal component communications are treated either

synchronously or asynchronously.

In the case of asynchronous communication, a Messaging pattern is applied. A

component acts as the single-entry point for all internal asynchronous communications

that take place among the Back-end services. This enhances the collaboration between

internal services, components, etc, limiting when required the burden of synchronous

communication that results in tight runtime coupling. The communication can take

place on messaging channels (one or more, can be defined appropriately) and various

architectural styles of asynchronous communications can be applied per case, based

on the component requirements. The main architectural style that is applied is Publish

/ Subscribe without of course limiting for future updates, to further enhance the system

if required by introducing also Publish / Asynchronous response, Notifications,

Request / Asynchronous response, Request / Response, etc. By applying this pattern,

various communication protocols can be supported that offer the ability to establish

and maintain network conversation between components to exchange real-time data.

As such Context Handling Component for example can subscribe to Runtime

Monitoring and Verification data for getting real-time monitoring information, Deep

Learning can retrieve real-time context information, etc.

In the case of synchronous communication, Remote Procedure Invocation (RPI)

pattern is applied. Internal components can still communicate directly with-each other

in a more traditional manner through the APIs exposed from the components

themselves offering a simple, familiar, request/reply, with no intermediate

communication. The actual RPI technology applied (REST, gRPC, etc.) in this case,

is up to each component to provide.

The above patterns enhance the Separation of Concerns principle, scalability and

performance, request orchestration, response translation, fallback enablement, rate

limiting and access control, autonomy, loose coupling, etc.

A more detailed and elaborate Information Flows diagram is presented in Figure 4

but due to the level of detail and the complexity of the diagram, it is not easily readable

within a pdf Deliverable. However, it is included in the present Deliverable to

demonstrate the work performed and base the descriptions of the information

exchanges among components that succeed in this subsection.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 15

Confidentiality: Public

Figure 3: SmartCLIDE Information Flows – Communication Architecture – Simplified Version

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 16

Confidentiality: Public

Figure 4: SmartCLIDE Information Flows – Communication Architecture – Full Version

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 17

Confidentiality: Public

The information entities handled by the system are specified in the following sub-

sections, as well as the corresponding relationships among them. The descriptions of

these entities are kept at a more abstract level, focusing more on the interface

specifications that will be used between components during communication.

Following the Consumer Driven Contracts principle, the next sub-sections describe in

detail each one of the components, the invocations that take place, along with the

appropriate exchange inputs / outputs.

4.1.1 Discovery of Services and Resources

Service Discovery is performed by an autonomous component. It takes responsibility

for searching available services along with its functional and non-functional features

at several heterogeneous user pre-defined sources, retrieves and hands them over to

the SmartCLIDE Service Registry. Once there, they will be classified and updated by

the DLE. The primary purpose is to make the services available, once classified, to the

Services Composition component. Thus, services can be retrieved from three sources:

Code repositories, service registries or web listings. Each of them presents some

particularities regarding the obtainable information:

▪ Code repositories allow to reach the services code and extract the information

needed to dockerize them. Code analysis (e.g. security) is performed over this

information. The communication is done via API requests.

▪ Web services listings provide access to both REST and SOAP services, being

their main disadvantage the lack of further information or the difficulty to extract

it. HTTP requests will be the communication method approach to this effect.

▪ Service registries are a natural source for service fetching, getting functional and

non-functional information from ontologies of already-existing services. The

API which normally registries deliver will be the source for this kind of retrieval.

Services are stored at the SmartCLIDE service registry with all their available

information. Later they are evaluated by the DLE. This evaluation consists of the

classification and analysis based on their functional and non-functional parameters. It

is performed regularly by the DLE, which will retrieve the unclassified services to

process them utilising a predefined model1. This new information will be updated in

SmartCLIDE service registry. Thus, services information will be queried to the

SmartCLIDE service registry in case it is needed.

Table 1: Discovery of Services and Resources cross-component interfaces.

Component Goal of Invocation Input Output

(External)

Code

repositories

To get the code from external services

along with its functional and non-

functional information

JSON Request Source code files,

ontologies

1 The classification model will be trained based on retrieved services for every source, as it requires a

normalisation process for the data, an adaption to the available information and an adjustment based on the

extractable categories. This last is a heuristic problem.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 18

Confidentiality: Public

(External)

Service

registries

To get the services from the source

along with its functional and non-

functional information, in the form of

ontologies

JSON Request Services

information

(Ontologies)

(External)

Web service

listings

To get the services from web listings

along with as functional and non-

functional information as possible

HTTP Request Services

JSON/XML/HTML

information

Service

Composition

(Passive, SmartCLIDE Service

Registry?) Service feature-based

queries

JSON Request Service suggestions

JSON

SmartCLIDE

service

repository

To save the retrieved services along

with their functional and non-functional

information

JSON, embedded

RDF/OWL

JSON Response

4.1.2 Service Creation, Composition and Testing

The Service Creation, Composition and Testing Component will interface with the

Smart Assistant, Service Discovery, Continuous Integration Server and the Runtime

Simulation and Monitoring Component. During the Service Creation process, the

inter-component interaction is with the Smart Assistant and the Continuous Integration

Server Component, during the Composition process the interaction is with the Smart

Assistant and Service Discovery Component and finally during the Testing phase it is

with the Runtime Simulation and Monitoring Component.

Table 2: Service creation, Composition and Testing cross-component interfaces.

 Component Goal of Invocation Input Output

Smart

Assistant

Get Code Templates

Get Suggestions for Workflow

Autocompletion

Ontology file,

BPMN file

Source Code (e.g.

JAVA file)

BPMN file

Service

Discovery

Search for a Service Structured Description

of Functionality (e.g.,

XML, ontology, etc.)

JSON file

(Discovery

Results)

Runtime

Simulation

&

Monitoring

Execute the Workflow runtime

simulation and monitoring

Ontology file,

BPMN file (completed

Workflow)

JSON file

(Workflow

Simulation and

Monitoring data)

Continuous

Integration

Server

Register a newly created Service, to the

SmartCLIDE Service Registry

Service file (service

implementation),

Structured Description

of Functionality with

service meta-data (e.g.,

XML, ontology, etc.)

none

Security

Component

New Service and Workflow Security

and Vulnerability Assessment

Source Code (e.g.

JAVA file),

BPMN file

Assessment

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 19

Confidentiality: Public

4.1.3 Security

Security Component is responsible for assessing security of SmartCLIDE applications.

It is comprised of three subcomponents: (i) security related static analysis, (ii)

vulnerability assessment, and (iii) report generation.

Security-related static analysis subcomponent will be responsible for handling all the

requirements related to the identification of potentially critical security issues (i.e.,

potential vulnerabilities) that reside in the source code of the produced software. More

specifically, this subcomponent will retrieve as input the source code of the different

tasks that will be defined in the Workflow Manager. This source code will be retrieved

from: (i) the code repository, in case a reusable code template/snippet is used, (ii) the

service repository, in case that the task corresponds to the invocation of a service, or

(iii) the actual code that is written by the developer, in case that no reusable service or

template is available and the developer needs to create this task from scratch. The

subcomponent will then invoke the execution of popular static code analysers (either

open-source or commercial) in order to detect security issues that reside in the different

tasks that constitute the overall workflow.

The Vulnerability Assessment subcomponent is responsible for assessing the security

level of the different tasks that constitute the overall workflow, as well as of the

workflow (and, in turn, the actual software) itself. In order to achieve this, this

subcomponent will retrieve the source code of the different tasks and apply a set of

carefully constructed Vulnerability Prediction Models. Similarly to the Security-

related Static Analysis subcomponent, the source code will be retrieved either from

the code template repository, or from the service repository. It can also retrieve the

code directly from the user, in case that the task is created from scratch.

The Report Generation component will be responsible for aggregating the results

produced by the Security-related Static Analysis and the Vulnerability Assessment

components for facilitating their further processing and comprehension. More

specifically, the raw results produced by the Security-related Static Analysis

component will be aggregated and presented to the user in an intuitive way through

Visual Analytics constructs (e.g., charts, graphs, etc.). In this section, we draft the

interfaces of the “Security” component. The definition of the interfaces has been

performed following the Consumer Driven Contracts principle and is presented in the

following Table.

Table 3: Security cross-component interfaces.

 Component Goal of Invocation Input Output

Workflow

Manager

Get the overall workflow along with

its meta-data (services, source code,

etc.)

Display the results of the security

analysis

JSON file BPMN file

JSON file

Service

Discovery

Get the code of a task or source code

of a service

Request Source code files

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 20

Confidentiality: Public

4.1.4 Runtime Monitoring and Verification

The RMV requires input from the service composition process to determine which

properties of the SOA application being constructed should be monitored at runtime

and what values/events in the application represent the information needed to verify

the properties. The RMV in response provides “virtual sensors” for identified

application events for installation into the composed application. These sensors

comprise calls into the Monitoring Application to register the occurrence of related

events.

Figure 5: Runtime Monitoring & Verification Information Flow

The RMV requires input from the running SOA application as events. These events

are consumed by the Monitoring Application specifically constructed for the specific

SOA application. The event definitions are selected to enable detection of the

properties of the application to be verified at runtime. There may be properties that are

common to multiple applications. That is, some properties may be instantiated from a

library of properties.

A Monitoring Application interfaces with a general Monitor Framework which in turn

can create logs of detected conditions, verification results/failures, and generate

notifications of detected conditions.

A Notification Agent will notify registered participants of conditions requiring runtime

action, e.g. action to terminate or restart an application that has failed to maintain the

properties that it is expected to maintain.

The Context Monitor uses the Monitor Framework to construct a monitor for events

of interest and to subscribe to receive monitoring data and notifications.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 21

Confidentiality: Public

Table 4: Runtime Monitoring & Verification cross-component interfaces.

Component Goal of Invocation Input Output

Monitoring

Applications

Invoked by the monitor’s

corresponding application to

register sensor values

Event ID none

Monitor Framework Context Monitor invokes

Monitor Framework to create

a monitor for context

conditions of interest

Conditions to monitor Monitor application

Monitor Framework Context Monitor invokes

Monitor framework /

notification agent to

subscribe to notifications

Where to send

notifications

acknowledgment

Monitor

Composition

Invoked by SOA application

composition to create

monitor

Application structure

and properties

Monitoring

Application

Notification Agent Invoked by Monitors

through the Monitor

Framework to distribute

notifications of detected

conditions

The composed service

concerned and the

detected condition

none

Log Agent Invoked by the monitor

framework to save log

records in persistent storage

Events and monitored

date from Monitoring

Applications

Records appended to

the Log file

The Notification Agent delivers notifications according to preconfigured or

dynamically registered subscription to notifications of monitored conditions. For

example, a notification would be delivered to the service manager (and possibly to

deployment and the service execution framework) when a monitor’s triggering

condition is met, such as a failure of a service to behave according to its specified

properties.

The Log Agent stores log messages to a persistent store and manages that store. Log

messages may correspond to events generated within the monitoring framework or to

events reported by other applications or SmartCLIDE infrastructure.

4.1.5 Runtime Simulation & Monitoring / Visualisation

The Runtime Simulation & Monitoring / Visualisation Component represents the

front-end for the Monitoring Module in SmartCLIDE. For this reason, this component

interfaces with the Runtime Monitoring and Verification Component, that provides a

framework and monitoring data of any of the applications (containers) already running

in SmartCLIDE. Once the monitoring is gathered, the Runtime Simulation &

Monitoring / Visualisation Component represents it through a visual console, allowing

the developer to track the status and/or performance of deployed instances.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 22

Confidentiality: Public

Table 5: Runtime Simulation & Monitoring / Visualisation cross-component interfaces.

Component Goal of Invocation Input Output

Runtime

Monitoring

&

Verification

Get list of available monitors. JSON Request JSON Response

Runtime

Monitoring

&

Verification

Get value of a given monitor. JSON Request JSON Response

Runtime

Monitoring

&

Verification

Subscribe to a given monitor. JSON Request JSON Response

(periodical)

Runtime

Monitoring

&

Verification

Unsubscribe to a given monitor. JSON Request JSON Response

4.1.6 Deep Learning

The Deep Learning Engine is an autonomous component which has the following

functionalities:

▪ Classifies services from several sources based on their functional features, users’

feedback or prior usages.

▪ Identifies the context delivered by context monitoring component in the form of

ontologies or JSON files.

▪ Enables abstraction selection, or the assistance to the composition of services

while BPMN workflow modelling.

▪ Generates or assists to the generation, of programmatic output in the form of

plain code, code templates or AI models.

▪ Gives support to functionalities delivered by the Smart Assistant which need an

intelligent behaviour.

 Services information will be retrieved and updated from/at the SmartCLIDE services

repository. These services have previously been fetched by the Services Discovery

component taking user-defined sources as origin.

Code generation feature will be trained with existing code for specific functionalities

(i.e. database connections, credentials checking, etc.) to deliver quality code templates

whose parameters can be autocompleted. This reference code will be extracted from

the consortium repositories via API.

The abstraction selection model will be trained with existing repositories of previously

used BPMN templates. The suggestions over the next suitable elements in BPMN

workflows will be provided in a JSON with the required information.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 23

Confidentiality: Public

Context Identification will get the information from the Context Monitor in the form

of JSON or RDF ontologies, to train the AI models and deliver its results.

Concerning the assistance to generate AI models, the user's input in the form of

structured files will be processed to extract the relevant fields and generate a model.

These models will be provided as a ZIP file with an embedded API to interact with

them.

The Smart Assistant AI-based suggestions will need the following input data in a

structured mode, to enable the AI selected algorithm to create a model or be able to

use it.

Table 6: Deep Learning engine cross-component interfaces.

Component Goal of Invocation Input Output

User input (Passive) To generate or utilise AI

models

Data Files JSON response,

Zipped/dockerized

models

Context

Monitor

To get abstractions for what the current

context is

Abstractions RDF/OWL, JSON

BPMN

repository

To get previously used templates to

learn from them and provide next-

element suggestions in composition

workflow

JSON Request BPMN templates

Services

Creation

To get code templates JSON Request JSON, embedded

template code

SmartCLIDE

service

repository

To get the source code or the features of

a service

JSON Request JSON, source code

+ ontologies

SmartCLIDE

service

repository

(II)

Get unrated services, update already-

rated services

JSON Request JSON Response

Smart

Assistant

(Passive) Suggestion queries based on

current user activity or other

component’s outputs

JSON Request JSON Response

4.1.7 Context Handling

The Context Handling Component will interface with the Runtime Monitoring and

Verification Component to receive monitored data.

It is foreseen that monitored data can be received both in a pull and push fashion from

the Runtime Monitoring and Verification Component. To pull monitored data for a

specific monitor and sensor the Runtime Monitoring and Verification Component shall

provide a corresponding Rest-API - see “Get the monitored values for a given monitor

and sensor” in Table 7.

To support pushing of monitored data into the Context Handling Component the

Runtime Monitoring and Verification Component shall provide a subscription

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 24

Confidentiality: Public

mechanism in form of a Rest-API where the Context Handling Component can register

itself as a subscriber for the monitored data of a specific monitor and sensor - see Table

7. Based on the existing subscriptions, the Run-time Monitoring and Verification

Component will publish monitored data via the Message Oriented Middleware.

The Context Handling Component in turn will provide the necessary interface to

receive monitored data, either as a Rest-API or via the Message Oriented Middleware

, depending on the amount of monitored data and frequency.

Table 7: Context Handling cross-component interfaces.

Component Goal of Invocation Input Output

Runtime

Simulation

and

Monitoring

Get a list of all available monitors none

HTTP query parameters

to filter and sort list of

monitors

JSON array of

available monitors

Runtime

Simulation

and

Monitoring

Get the monitored values for a given

monitor and sensor

HTTP path parameters

“monitorID” and

“sensorID”

JSON array of

monitored data

Runtime

Simulation

and

Monitoring

Subscribe to a given monitor and a

given sensor

HTTP path parameters

“monitorID” and

“sensorID”

JSON data representing

the “address“ where to

send monitored data

JSON object

representing a

subscription

Runtime

Simulation

and

Monitoring

Unsubscribe from the given

subscription

HTTP path parameters

“monitorID”,

”sensorID”, and

“subscriptionID”

JSON object

representing

Success or Failure of

operation

Deep

Learning

Send current identified context. RDF model JSON object

representing

Success or Failure of

operation

Additionally, the Context Handling Component may provide a Rest-API endpoint,

which returns an RDF model of the current identified context.

4.1.8 Smart Assistants

This component takes the user's actions within the interface in the form of events and

returns suggestions through the IDE interface, all depending on the current software

lifecycle stage. Thus, it is dependent on the IDE events API. Once the events are

thrown and provided the current software development stage, either a DLE algorithm

or a third-party plugin will be queried for a suitable suggestion given the user context.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 25

Confidentiality: Public

It either makes queries to the DLE or a specific plugin depending on the nature of the

query.

Thus, the source of information, depending on the desired assistance and development

stage, can be:

▪ Third-party modules, called in the event of an already-developed assistance

functionality.

▪ The DLE, which will provide input mechanisms for structured data to (i) train

the functionality model; and (ii) make use of it.

As mentioned above, it will be needed to determine the current context of the user:

▪ During the Requirements & Design stage, inputs will be:

− The Gherkin schemes and functionality provided by the user

− The current BPMN workflows along with user inputs on the IDE interface

▪ During the Development stage:

− The programmer input via the IDE interface

▪ During the Testing stage:

− The test results

▪ During the Deployment stage:

− The Service Deployment component. Consortium components information

will be available all through the platform via an API.

All these pieces of information will be retrieved from the matching component through

its API when the matching interface event is triggered.

The SmartCLIDE assistant capabilities and matching plugins, as well as the assistance

feasibility regardless of the mock-ups provided in D1.4, will be tested during the

project development, being the AI model creator assistant the initial reference to this

purpose.

Table 8: Smart Assistants cross-component interfaces.

Component Goal of Invocation Input Output

Deep

Learning

Engine

To get suggestions that match the current

user status or action

JSON Request JSON suggestions

Services

Composition

(Passive) To return suggestions on next

suitable items for BPMN flows

JSON Request JSON suggestions

Theia

Interface

(Passive, events) To get what the user is

doing at each stage of software lifecycle.

Theia interface events JSON queries (to

other components)

Other

components

To get other components’ outputs for

analysing and returning suggestions at a

specific software lifecycle stage

JSON Request JSON Response

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 26

Confidentiality: Public

4.1.9 Services Deployment

The Services Deployment component represents the front-end for deployment tools.

As defined in D1.4, this component can be used by the developer by using a Command

Line Interface, or a Web-based application that not only allows the developer to deploy

a new service (or a complex system built from more than one service), but also to

check the status and health information about existing containers.

To achieve this behaviour, Services Deployment component retrieves the list of

existing containers or images, and their status (e.g., health, network configuration…)

from Workflow Manager which interacts with the Runtime Monitoring and

Verification component. Moreover, it also needs to access any needed backend docker

commands (e.g., docker pull, docker run…) to use its engine to deploy, manage or stop

containers.

Table 9: Services Deployment cross-component interfaces.

Component Goal of Invocation Input Output

Workflow

Manager

(Services

Creation,

Composition

and Testing)

Retrieve information

about existing containers (e.g., status,

health…), available docker images...

JSON Request JSON Response

Services

Creation,

Composition

and Testing

Deploy a new container using back-end

commands (e.g., docker)

JSON Request JSON Response

(result) + new

container

4.1.10 API Gateway

CERTH will implement and design a RESTful API gateway through which all

functionalities of the SmartCLIDE platform (from user registration to service

discovery and service creation) will be exposed to the user. This component will also

provide authentication and authorization functionalities using the best industry

standards like OAuth2 [1]. Several technologies can be used to implement this

component. CERTH has extensive experience in designing and developing similar

gateways using Python technologies like Flask [2] and Eve [3].

4.1.11 Message Oriented Middleware

This component will be responsible for the inter-component communication within the

SmartCLIDE platform. It will be implemented as a message broker and will provide

asynchronous communication functionalities based on the publish-subscribe (i.e.

pub/sub) pattern. The component will facilitate the loose coupling of the components,

which will enhance their developability and maintainability. The pub/sub pattern is

capable of serving multiple senders and multiple receivers simultaneously, and

therefore scalability will be inherently supported. The component will provide

message routing, transformation, and validation functionalities. In addition,

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 27

Confidentiality: Public

specific security policies will be implemented within the component. There are

several message broker’s software available, with popular choices being the Apache

Kafka[6], Apache Qpid[7].

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 28

Confidentiality: Public

5 System Deployment View

This section presents the deployment view of the core components of the SmartCLIDE

platform, as shown in the following figure, paving the way towards the successful

system integration. It connects the Frontend and Backend services of the platform as

well as the pilot sites infrastructure located either on Public or Private cloud.

At a high-level view, the SmartCLIDE platform consists of following major

components:

▪ the SmartCLIDE IDE

▪ the RESTful API Gateway

▪ the Backend System

▪ the Message Oriented Middleware

▪ the Deployment infrastructure

The SmartCLIDE IDE is a cloud-based software development environment that

includes the SmartCLIDE Toolbox, the Assistant, the Runtime Simulation and

monitoring/visualisation and the Workbench. The Toolbox supports the software

development lifecycle and provides all the necessary tools to specify new features,

acceptance tests, unit tests and integration tests. The users may also define a BPMN

Workflow through the Workbench and visualize its state with the Runtime Simulation

and monitoring/visualisation component. Additionally, the Assistant helps both

technical and non-technical users with the software development lifecycle by

providing recommendations and real-time suggestions.

The RESTful API Gateway addresses all the authentication and authorization concerns

regarding the use of the Backend services. Authentication deals with whether a Client

is allowed to connect to a specific server providing the API while authorization is

concerned with whether a particular Client after connection is allowed to perform the

task in question or otherwise have access to a specific resource. The Basic

authentication approach is the simplest one where an HTTP header with username and

password information is included in base64 encoding. Due to the fact that this

approach contains the credentials unencrypted it should only be used with encrypted

SSL/TLS connections. To avoid the overhead of sending the credentials with each

request and avoid tampering of the headers or body of the request, Hash Based

Message Authentication (HMAC) represents an option where the Client sends a digest

of the request and a nonce that based on a shared secret between Client and Server it

can be verified. A more common approach used is the OAuth 2.0 token-based

authentication where Clients after registering with a provider are given a token to be

used with every request. Requests that have been altered in any way or contain an

invalid token are rejected. In general requests should be made over SSL/TLS otherwise

the token can be stolen. Tokens can also be made to expire after a certain period or be

revoked to restrict access when necessary.

The Backend System is a multi-functional component including many other sub-

components such as the Service Creation and Composition management, the Deep

Learning Engine, the Service Discovery, the SmartCLIDE IDE Data sources and the

CICD related components Git, CI server and SmartCLIDE Service Registry. It

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 29

Confidentiality: Public

interacts with both the frontend SmartCLIDE IDE to provide the necessary support to

its functionality and the Deployment environment to produce the user application

services. These services are deployed either on Public or Private Cloud according to

the user needs.

It has been identified from the early stages of the project that the main focus was on

enabling to the greatest extent and in the best possible way a scalable, fault-tolerant

communication-efficient framework. For this purpose, a Message Oriented

Middleware has been added to serve as the communication layer among different

components of the Backend System.

In terms of hosting, all the microservices developed by the end users is recommended

to be hosted in either public or private cloud virtual machines infrastructure with a

Unix-based OS. In case of any project restriction or different approach selected for any

purpose, compliance with any other hosting model will be feasible.

Figure 6: SmartCLIDE Deployment Architecture

The components that will use the MoM can be briefly described in Table 10.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 30

Confidentiality: Public

Table 10: Components using MoM.

Component Puspose

RT Monitoring and Verification Server Exchange monitoring data

Deep Learning Engine Context Handling sub-component will communicate with the

RT Monitoring and Verification Server

SmartCLIDE Service Registry Get services

Service Discovery Write services suggestions

Service Composition Management Retrieve autocomplete/code templates

5.1 Deployment at Pilots

5.1.1 PERSEUS Pilot – INTRASOFT International

Figure 7: PERSEUS Current Deployment View

Perseus product is based on a multitude of state-of-the-art technologies which are all

combined in a decoupled and scalable setup. The core business application logic exists

in a number of Java EE Web applications (Figure displays only 6 for clarity) deployed

in a cluster of Java EE Application servers. Business logic is externalized from the

core application logic by using external Business Process and Rule Management

Engines which are connected through Adapter APIs with the core application. On the

other hand, Perseus provides numerous outbound integration endpoints such as Rest

API, WebSockets and also Kafka and Camel generic adapters.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 31

Confidentiality: Public

Deployment

A crucial part of complex software systems development and delivery lifecycle is

Continuous Integration (CI) and Continuous Delivery/Deployment (CD) – jointly

mentioned as CI/CD. CI, in software development, is a practice of building/integrating

and testing all developer working code frequently in a shared code repository. A

common practice in CI is to integrate the changed code at least daily. The frequent

integration helps the contributors to notice any arising errors and correct them

instantly.

Figure 8: The Continuous Integration Lifecycle

Continuous Integration offers significant advantages such as:

▪ reduction of risk in the development, since it reveals any possible

incompatibility between software components early during the development

phase

▪ facility of instant bug fixing

▪ availability of current product version at any moment, as the code is frequently

integrated

In order to enable the CI process and benefit from the aforementioned advantages we

have to perform extensive testing of each software component/module but also of the

integrated platform as a whole. Automated per component tests and combined

integration tests that are performed on each new build (version) of a component shall

be executed and in case of success the integrated platform will be updated with the

new version of the component. Otherwise the developers will be notified so as to take

proper action to fix the problem that caused the failure. A Test-Driven Development

(TDD) approach may be followed, starting from unit tests per software component,

upon specified test cases for each component, proceeding to integration tests that

validate the correct functionality of the integrated platform that involves two or more

components in an automated manner with the use of a CI server, such as Jenkins2.

Many teams find that this approach leads to significantly reduced integration problems

and allows a team to develop cohesive software more rapidly.

2 https://jenkins.io/

https://jenkins.io/

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 32

Confidentiality: Public

In case that the resulting software system is composed of several software

components/modules, developed by diverse development teams, a collaborative

software development approach can be followed, during which it is important to ensure

data integrity and availability. To support this, a distributed version control system

(VCS) is necessary for the efficient system software delivery. For this purpose,

GitLab3 could be utilized, a source code management and VCS that aims mostly at

data integrity and full version tracking. GitLab is an easy yet powerful and intuitive

git VCS. Multiple developers can concurrently create, merge and delete parts of the

code they are working on independently, at their local system before applying the

changes to the shared GitLab repository. A DevOps framework could be adopted.

To ensure quality of software development, build automation is additionally pursued.

Build automation is considered to be the act of automating processes that are

associated with software building. Such processes might include various parts like

source code compiling into binary code, packaging binary code and automated test

running but also the delivery/deployment and documentation parts. Maven4 is a useful

tool for build automation and project management for projects that are written in

numerous programming languages (Java, Ruby, C# and other). This process can be

applied for components software shared and residing in the software source code

repository.

It is also essential in collaborative software development to distribute the software

efficiently. Among others, Nexus5 is a popular repository manager that manages the

required software artifacts. It allows developers to distribute their software easily but

also to proxy, publish and collect the necessary project dependencies. Actually, the

Nexus Repository offers a standardized way for cataloguing and storing developers’

artifacts. Once a new library is developed, it is handed out to the repository manager.

After that, other developers can efficiently access these software components by using

a standardized procedure. Clearly, it is possible to control centrally the development

of all artifacts and the access to them. Nexus can be used for pre-built software

components, the source code of which is not available or shared – however, updated

versions of software components need to be frequently built and released in new

versions at the Nexus repository to support continuous integration and delivery. The

CI server will monitor the repository and will initiate a new platform test and

deployment cycle after each new version upload.

To further support automated delivery (Continuous Delivery - CD) in software

development, Docker6 can be chosen as a straightforward way to provide isolated

running environments with pre-set configuration. Docker is an open-source software

containerization platform and it works with software containers in order to allow the

software to run always the same, independently of the deployment environment.

Actually, it wraps up the software in a complete file system, along with any necessary

tools or software resources, such as libraries, code and runtime. This way, multiple

docker containers can run on a single Linux instance, without any overhead for

3 https://about.gitlab.com/
4 https://maven.apache.org/
5 https://www.sonatype.com/product-nexus-repository
6 https://www.docker.com/

https://about.gitlab.com/
https://maven.apache.org/
https://www.sonatype.com/product-nexus-repository
https://www.docker.com/

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 33

Confidentiality: Public

managing several virtual machines. Moreover, by using Docker, the software system

deployment is simplified at a great extent, set up is minimal and uniform across all

component projects. Each component is contained in a different Docker image ready

to be executed in a Docker hosting machine as a separate container. These images can

be published in a shared repository, such as the Docker registry, and through the

Docker Compose functionality these images can be retrieved from the Docker registry

and deployed together via a single configuration file. Containerization thus provides

OS level virtualization. This means that multiple applications running in containers on

a single host, access the same OS kernel. Hence, it is faster and more lightweight than

isolating applications using VMs. Containers have an initial configuration which does

not affect the configuration of other containers, even though they share the same host

OS. This eliminates errors due to unexpected conflicts or missing dependencies, which

are common when applications are installed on a single host without isolation. In more

demanding installations due to increased load of the system, Docker is perfectly

suitable to be configured with load balancing mechanisms that can scale up the

performance of the system.

Kubernetes7, an open-source system created by Google, has gained popularity over the

past few years and has become the industry standard for deploying containers in

production. It allows the deployment, management, and monitoring of multi-container

applications at scale. These functionalities along with the use of pods, clustering,

rolling updates, load balancing and horizontal scaling results in dynamic scaling that

can be achieved for a specific element, microservice or container. Moreover, by using

deployments, it provides an easy way to scale and update pods always online.

Kubernetes is the most widely adopted orchestration tool that has been integrated due

to its open-sourced nature to many corporate-ready cloud solutions.

The following figure depicts the CI/CD workflow with all the tools mentioned above,

and summarized below:

▪ GitLab for source control, acting as code repository and allowing code

versioning

▪ Jenkins for automated build and testing

▪ Docker for containerization of services and components

▪ Docker Registry for easy deployment at different infrastructures

7 https://kubernetes.io/

https://kubernetes.io/

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 34

Confidentiality: Public

Figure 9: Continuous Integration & Continuous Delivery process

Using the CI/CD environment and tools, when developers implement new component

features or integration endpoints, they push their code to GitLab, the central source

code repository in this environment. The code is then compiled, built and tested using

Jenkins. Finally, Docker is creating a Docker image, that is pushed to the Docker

Registry.

Once components have been built and their images have been pushed to the docker

registry, they are available to be pulled from any server which has access to the docker

registry. The deployment to Deployment servers can be carried out via a script which

automates the entire process.

SmartCLIDE should thus provide the user with the following capabilities as described

in detail in D1.2: Requirements Analysis:

▪ Provide a complete, easy-to-use, configurable online integration platform that

will enable business process design in a drag-and-drop nature, but also

supporting low-code capabilities.

▪ Following the previous action Real-time compilation, verification and

deployment of the developed scenarios should take place.

▪ SmartCLIDE should offer a common adapting layer where all services deployed

will communicate with the external world in the customer-desired formats, but

use a single common, homogeneous API for internal SmartCLIDE usage.

▪ Easy integration and deployment to a running system, with minimum downtime

and zero actual application re-deployments where possible.

5.1.2 Real-time Communication Platform Pilot – Wellness Telecom SL

Real-time communication platforms have become a key service in businesses. In fact,

running them on the cloud is a great way to manage their own privacy and

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 35

Confidentiality: Public

requirements. Cloud-based real-time communication platforms are commonly named

UCaaS – Unified Communication as a Service –, and are typically composed by

several elements or entities (i.e., microservices) that conform the global service. Using

containers is a great way for providing both security and flexibility, getting advantage

from its inherent characteristics (e.g., network isolation, or replication). In fact, real-

time communication services have strong QoS requirements, which in turn depends

on the performance of network or any involved systems (i.e., CPU resources), so that

real-time adaptation is a very interesting characteristic in this kind of services.

Next, we elaborate on the entities that conform the whole system in Section 5.1.2.1.

Then, in Section 5.1.2.2 we show how each entity collaborates with the rest in real use

cases (from end-users’ point of view). Finally, we introduce the expected

implementation in 5.1.2.3.

5.1.2.1 Entities in the system

The overall system can be seen as a unified system from the end-user point of view as

illustrated in the following figure. In this figure, each user accesses the service using a

SIP agent (e.g., browser, softphone…) which assumes two types of information flows:

signalling (e.g., negotiation, call establishment, hang) and voice/video data. Observe

that data may be (de)multiplexed during the exchange process given the fact that one-

to-many and many-to-one communications are allowed (e.g., conference rooms). On

the other hand, note that there is an entity named “system administrator” that has direct

access to the platform (e.g., ssh), for example to assess maintenance tasks.

Figure 10: Real-time Communication Platform

Inside of the communication platform, there might be a variable number of entities

depending of the offered service and its capabilities. In WT’s case, the collection of

entities in the system is defined in the following table.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 36

Confidentiality: Public

Table 11: Collection of the system entities

Entity Usage

Voice gateway Gateway and balancing for VoIP (signalling)

Video gateway Gateway and balancing for VideoIP (signalling)

Web server Allows users to join or start a call using a browser (i.e.,

embedded SIP Agent)

RTP Proxy Redirects RTP connections to the corresponding server

VoIP server Handles SIP signalling (e.g., call establishment) for audio calls

VideoIP server Handles SIP signalling (e.g., call establishment) for video calls

Mixer and/or transcoder Provides transcoding and mixing video tools

Database Provides storage capabilities (e.g., registered users, calls in

progress)

Each of these entities can be represented as illustrated in the following figure. In the

figure, each entity is represented as an independent instance that communicates with

each other using an internal network named “overlay network”. In order to provide the

communication service to the end user, some of the entities have also to expose a series

of ports over the external network (i.e., LAN). Users must have access to the following

entities:

▪ The web server, to log into the service and join or create any existing call. This

component also acts as a SIP agent (i.e., embedded), allowing users to trigger

calls without using external applications.

▪ The gateway, to send and receive any signalling data (e.g., call establishment,

hang…)

▪ The RTP proxy, to send and receive voice or video flows.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 37

Confidentiality: Public

Figure 11: Real-time Communication Platform Components

5.1.2.2 Usage workflow

In order to understand how each element in the previous figure may collaborate, let us

consider a brief example of a simple peer to peer call. Let’s consider that “User 1” is

the caller, and “User 2” is the callee. The following steps are completed until the call

is established:

1. The caller logs into the web-based application, which includes a SIP Agent and

triggers the call.

2. The SIP agent will access to the gateway, using the LAN and through port:5060.

This request will use SIP protocol for signalization.

3. The gateway will check in the database that the user who starts the call is

registered in it. If yes, the gateway service will check which VoIP server has to

handle the call.

4. The gateway will forward the call to the chosen VoIP server using SIP.

5. The VoIP server will check the database to know some information related to

the callee. This information is necessary to establish communication with the

receiver.

6. Once this information is retrieved, the server will answer back through the

gateway (to continue the signalling handshake).

7. The gateway service will use SIP protocol to communicate with the callee’s SIP

agent.

8. This SIP agent will ring waiting for the receiver’s acceptance.

9. Once it is verified the communication is possible, the gateway service

communicates with RTP proxy to select free ports to handle the data streams for

audio properly, solving problems related to NAT.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 38

Confidentiality: Public

10. From this moment on, the RTP will manage directly data flows from both users,

supporting the traffic between two users

5.1.2.3 Deployment

In a cloud environment, each of the previous entities may be deployed as one or more

containerized instances depending of replication or scalability requirements. Find

below a table that maps each entity with its containerized application.

Table 12: Network - scalability requirements

Name Functionality Network

exposure

Required instances (#)

Kamailio Voice gateway Yes 1

Video gateway

Web portal Web server Yes 1

RTP Engine RTP proxy Yes At least one

Doubango VoIP server No At least one

VideoIP server

Mixer and/or transcoder

MySQL Database No 1

Mongo DB No 1

Redis No 1

A brief description of each container can be found as follows:

▪ Kamailio: This is a very flexible open source SIP proxy server, which can be

used to build complex real-time communication platforms; it can also support

Presence and Instant Messaging functions. This service can also act as a load

balancer of VoIP and video calls along with other servers. In the present use

case, Doubango servers are used as video conference servers while Kamailio is

responsible for the signalization protocol.

▪ MySQL: An open-source management system for relational databases based on

Structured Query Language. In this case, a MySQL database is used to store

registered users in the system, as well as the calls registry and another dataset

important for the proper operation.

▪ RTP Engine: This service allows media data flows to circulate through itself

supported by the RTP protocol. The data flows can be both audio and video

flows.

▪ Doubango: This service is an open-source SIP TelePresence System. It is used

as a video mixer for shaping various streams at conferences.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 39

Confidentiality: Public

▪ Web Portal: This service exposes a website that offers access to the

communications system without installing additional software in user devices.

This portal provides an agent (SIP agent) which can be executed in the browser

and lets anybody registered in the system use the service without having any

other program installed in his device.

▪ Mongo DB: This is an open-source cross-platform document-oriented database

program, and is used as a database for the web portal.

▪ Redis: an open source (BSD licensed), in-memory data structure store, used as

a database, cache and message broker. It is also used as a database for the web

portal.

Finally, a monitoring agent may be considered to collect monitoring data within the

internal network, and to push it to the SmartCLIDE monitoring server. Figure 12

provides a snapshot of the final architecture of the components of this pilot use case.

Figure 12: Real-time Communication Platform Architecture

SmartCLIDE should allow the developer to deploy the described pilot case by

following the next steps:

1. Developer will explore SmartCLIDE repository and find the real-time

communication platform.

2. Developer will load the real-time communication platform in the IDE.

3. Developer will be able to customize the deployment (number of instances –

replicas of RTP Engine or Duobango containers, ports exposed to external

network…).

4. Developer will be able to deploy the service.

During the service execution, SmartCLIDE should assist the developer in:

a. Management tasks, allowing the developer (or IT manager) to connect to any of the

deployed instances (e.g., ssh to MySQL).

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 40

Confidentiality: Public

b. Re-deploying the service, e.g., to increase the number of instances of RTP Engine or

Duobango dockers.

c. Monitoring any of the existing dockers.

d. Programming automatic scaling tasks, such as replicating RTP Engine instances

whenever is needed (e.g., the number of open ports is exhausted).

5.1.3 IoT-Catalogue IDE – UNPARALLEL Innovation, LDA

The IoT-Catalogue (https://www.iot-catalogue.com) is a web-based tool that allows

IoT stakeholders to explore innovations in IoT applications and technologies. It is a

wide repository of knowledge, use cases, contacts, etc. of the Internet of Things that

allow users to pick & choose IoT solutions.

5.1.3.1 Current IoT-Catalogue Infrastructure

The IoT-Catalogue infrastructure is composed by several components deployed on

different machines and on different geographical spaces. Components are distributed

across different Docker stacks, being one stack deployed on Amazon Web Services

(AWS) while others are deployed in servers at UNPARALLEL’s premises.

This section describes the current setup of IoT-Catalogue infrastructure. Figure 13

presents a diagram of all components included in the current architecture. Each of the

component is described, explaining its function. Also, it is explained how each

component is connected.

Figure 13 - Overview of the current deployment of IoT-Catalogue components

▪ IoT-Catalogue Front-End: IoT-Catalogue, being meteor Framework based, it

has its code split between server and client, with the communication established

via WebSockets. The Front-End represents the part that runs on the client’s

browser.

▪ IoT-Catalogue Server: The Server section, is which enforces all the control of

the information, access to the database, user sessions, etc. and handles all the

user requests.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 41

Confidentiality: Public

▪ Nginx: All the connection to outside world is tunnelled by the Nginx, this

establishes secure channels to the users (SSL), and routes the requests to the

different services.

▪ MongoDB: Database to store all the assets of the platform.

▪ Elasticsearch: Indexing and relate information is one key aspects of the IoT-

Catalogue, Elasticsearch is used as a support tool for providing this.

▪ S3: All the static content of the IoT-Catalogue is stored in a cloud storage

service, such as Amazon S3.

▪ Image Resizer: IoT-Catalogue rely on heavy processing services, such as this

service to resize images to web friendly sizes. This, and other services like this,

run locally in UNPARALLEL premisses, on local infrastructure, and connects

to the IoT-Catalogue with two mechanisms. One WebSocket, to receive real time

updates on information change, such as being informed when new images are

uploaded. And a REST API, for publishing new information on IoT-Catalogue.

Additionally, these services can also connect to external services such as

Amazon S3 to upload images.

The next section explains how SmartCLIDE will improve the IoT-Catalogue

infrastructure.

5.1.3.2 SmartCLIDE empowered IoT-Catalogue Infrastructure

An opportunity was discovered. IoT-Catalogue needs a way to provide to the

community integrated development capabilities. SmartCLIDE will provide such

capabilities, by providing an IDE. This IDE will provide the ability to develop inside

the IoT-Catalogue in an integrated approach. SmartCLIDE’s other contribution is

based on enriching the current information that IoT-Catalogue, which will be done by

the indexation and classification of the services included in IoT-Catalogue. By adding

this ability, the current infrastructure will need improvements and updates.

Figure 14 shows a possible architecture, resulting from the integration of the current

infrastructure of IoT-Catalogue with the SmartCLIDE.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 42

Confidentiality: Public

Figure 14 - Overview a future deployment with SmartCLIDE components integrated in IoT-

Catalogue infrastructure

Such improvements need to work over the current IoT-Catalogue architecture, and are

as follows:

▪ SmartCLIDE Front-End: For a seamless integration in IoT-Catalogue, the

SmartCLIDE IDE is desired to be presented in a JavaScript library, preferably

in React.js.

▪ SmartCLIDE IDE Manager: For optimization purposes, and to facilitate the

Authentication procedures, a coordination module should be deployed on the

same stack as the IoT-Catalogue server and database for security purposes.

▪ SmartCLIDE Workspaces: Since SmartCLIDE will rely on one workspace per

user, the deploy of the workspaces will be done locally in UNPARALLEL on a

dedicate machine to provide the needed resources to the users.

▪ SmartCLIDE Back-end: Back-end services will be also deployed locally. It is

expected that services such as the ones to index and analyse the services, to be

heavily processing and will also run locally in UNPARALLEL. These services

will communicate with IoT-Catalogue through the WebSocket for real-time

communication (subscription of updates on services) with conjugation with

REST API to post information updates.

SmartCLIDE will share with IoT-Catalogue its authentication. In other words, this

means that to a user of IoT-Catalogue will be given access to SmartCLIDE IDE

features using IoT-Catalogue authentication credentials. And this way, IoT-Catalogue

users can seamless access to the integrated development environment provided by

SmartCLIDE.

SmartCLIDE takes advantage of WebSocket and a REST API communication to

connect to IoT-Catalogue.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 43

Confidentiality: Public

5.1.4 CONTACT Elements for IoT – CONTACT Software GmbH

With CONTACT Elements for IoT, companies quickly provide solutions that

intelligently evaluate the data of industrial assets using a Digital Twin. Elements is a

complete platform from edge connectivity to business applications for customers on

the web. Elements is ideal for creating agile solutions according to the low-code

principle and fulfilling comprehensive requirements for security, cloud and multi-

tenancy operation, as well as integration into the company's IT.

5.1.4.1 Continuous Integration

Why CI in General?

The effort required to integrate a system increases exponentially with time. By

integrating the software system more frequently, integration issues are identified

earlier, when they are easier to fix, which is typically right after the actual change that

led to the issue has happened and the overall integration effort is reduced. The result

is a higher-quality product and more predictable delivery schedules.

Continuous integration provides the following benefits:

▪ Improved feedback. Continuous integration shows constant and demonstrable

progress.

▪ Improved speed. A good CI offers high speed: Developers can deploy small

increments much faster and get almost instant feedback. This means that other

colleagues have to wait much less for the increments, the processing times of a

change are shortened and therefore the waiting times are decreased as well. If

the waiting times are short, we increase throughput because the queue length is

shorter.

▪ Improved error detection. Continuous integration enables you to detect and

address errors early, often minutes after they’ve been injected into the product.

Effective continuous integration requires automated unit testing with appropriate

code coverage.

▪ Improved collaboration. Continuous integration enables team members to

work together safely. They know that they can make a change to their code,

integrate the system, and determine very quickly whether or not their change

conflicts with others.

▪ Improved system integration. By integrating continuously throughout your

project, you know that you can actually build the system, thereby mitigating

integration surprises at the end of the development project.

▪ Improved automation. Continuous integration forces us to automate all steps

necessary for integrating the software, such as building and testing for example

(which ultimately paves the path to automatic deployment).

▪ Reduced number of parallel changes that need to be merged and tested.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 44

Confidentiality: Public

▪ Reduced number of errors found during system testing. All conflicts are

resolved before making new change sets available and by the person who is in

the best position to resolve them.

▪ Reduced technical risk. You always have an up-to-date system to test against.

▪ Reduced management risk. By continuously integrating your system, you

know exactly how much functionality you have built to date, thereby improving

your ability to predict when and if you are actually going to be able to deliver

the necessary functionality.

▪ Drive with “open eyes”. By providing on each commit the status of the entire

code.

Figure 15 shows the development process flow (including the tools in use) at

CONTACT Software. All of the applications as well as the platform are developed the

same way.

Figure 15: Development Process Flow

Each push to the internal GitLab instance triggers a whole CI pipeline (as long as a

valid configuration exists). We do this, since we try to follow the principle “If it hurts,

do it more often”. Since the introduction of CI, the duration of the average pipeline has

grown a lot. However, after the migration from Buildbot to GitLab CI, the duration of

a typical pipeline was cut more than in half due to the built-in GitLab feature of

parallelization. Although the pipelines consume a lot more resources in general doing

it that way, it is still cheaper than developers waiting for feedback on their latest

commit.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 45

Confidentiality: Public

Pipeline Scope

The pipeline should contain of the following stages, which will result in a diamond-

shaped form.

▪ Building (if necessary): On all supported platforms (typically Windows and

Linux and the lowest supported version of CONTACT Elements). The building

stage compiles the code (with the newest changes, so the latest revision of your

repository) and may contain initial unit testing to ensure that the system works

on a technical level. It also builds and signs possible installers (in our case mostly

.msi and signing is done with signtool) or respective eggs/ wheels.

▪ Testing: The testing is done automatically and mainly asserts that the system

works at the functional and non-functional level, meaning that the behaviour of

the system meets the needs of its users. This is where the parallelizing develops

its full shape. It is done on all relevant platforms (applications usually on Linux

and Windows, CAD packages only on Windows) and include unit, acceptance

and performance testing, while collecting coverage and test results. Also some

manual testing might be performed, but this is best done after deploying the

changes into a test system, to which also stakeholders have access to (which is

also part of the automated pipeline).

▪ Analysis: Consists of static code analysis (SonarQube), checking of the

CONTACT Elements customizing and security checks (using tools such as

Bandit). With SonarQube as our tool of choice and the possibility of creating

quality gates, we committed ourselves to a few crucial metrics we set a threshold

for that may not be broken by a change. These metrics are firstly critical issues

(none allowed), unit test success (100%) and coverage on new code (above

60%). This applies to all branches under development (excluding maintenance

branches where only bug fixes are committed). With GitLab CI, we are able to

analyze the source code early in the feature branches, so a developer will not be

surprised by breaking quality gates after merging changes into the master.

▪ Release: The purpose of the release stage is to deliver changes to the actual users

(who may just be a stakeholder in a development project). The artifact in this

case does not always have to be a packaged piece of software, but may also be a

deploy into a staging environment. Hence, this stage must not always lead to an

actual tag, however merges and commits on the master have the upload of a dev

release to the package server (PyPi) as a result. The deployment takes place in

the inhouse Kubernetes cluster in which each development team has its own

namespace to avoid conflicting services to be deployed.

5.1.4.2 Continuous Delivery/ Deployment

While we do not fulfil each criteria when it comes to Continuous Delivery or

Deployment (it is not automatically shipped to the customer), we do it in a smaller

scope. Usually, each run of a GitLab CI pipeline on a master branch of a repository

has an upload of a dev release to the inhouse package repository as a result. On top of

that, a docker image with all the current changes is built and uploaded to the internal

docker registry (which may be used by Sales for demonstration purposes) as well.

Furthermore, each pipeline (also the ones not running on a master branch)

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 46

Confidentiality: Public

automatically creates a test deployment on Kubernetes, which may then be used for

smoke tests or a review in a merge request (UI or configuration changes mainly).

However, there are currently two production systems in use to which we deploy

continuously. First, the web demonstrator, to which a potential customer may gain

access by a simple registration on our website and secondly out inhouse version of

CONTACT Elements (used for document, issue and project management for

example). These systems are automatically updated by each commit on its master

branch.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 47

Confidentiality: Public

6 System Delivery Plan

6.1 Software Engineering Approach

6.1.1 Principles and Validation of the SmartCLIDE solution

The proposed software engineering approach will apply a blend of agile/lean

frameworks that focus on putting the user in the centre of the solution construction

process. In this way, by involving end-users from early stages, uncertainty will be

reduced. In this sense, partners piloting the solution, and some additional selected

customers, will act as Product Owners of the agile development process, thus

participating during:

▪ The gathering of requirements

▪ The prioritization of requirements to be implemented, based on market value

▪ The integration, and the validation of the concept and its correct operation.

▪ Feedback provisioning (back into design and implementation).

▪ The assessment of the solution from the technical and business perspective.

Following this approach, the design, the implementation and the validation happen in

small iterations, i.e. they follow an iterative evolutionary approach. In this way, at the

end of each iteration, there will be a working prototype, so that the effectiveness of the

solution (methodology and services) will be evaluated by the pilot users.

During the development of the project, SmartCLIDE will provide business metrics to

showcase the improvement achieved in relation to the software creation process for

pilot partners, and other social and business benefits for industrial partners, ICT

providers, end users, etc. Some other interesting metrics would be those related to S/T

objectives, so that we can validate some of the expected aspects of the solution:

flexibility, extendibility, scalability, effectiveness, etc. The Early prototype testing

will use the key elements of the envisioned project results as add-ons to the existing

processes and infrastructures provided by the pilot users, and will aim at TRL-5. To

measure the success of the project technical results, the full prototype will be made

accessible to the pilot users. Besides testing the full prototype in an experimental

environment, many business metrics will be assessed, for example: time to implement

a full microservice, time to deploy a microservice, mean team between development

and production deployment, number of detected errors by time, learnability or time

taken to implement the first application, etc. Finally, the prototype will be configured

for the assessment in real-life scenarios. The measurement of all defined metrics and

benefits will continue. During this phase, it is expected to achieve all defined targets

and a TRL 6.

6.1.2 Methodology: Adaptive Project Management approach

For the development of SmartCLIDE, the consortium proposes to follow an Adaptive

Project Management (APM) approach. The reason for this is that SmartCLIDE

encloses a high complexity (due to the combination of leading-edge technologies), as

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 48

Confidentiality: Public

well as high levels of uncertainty (due to the application of early software engineering

theories that disrupt the current Software Engineering practice) and the APM approach

which has been designed to successfully manage complex projects with high levels of

uncertainty.

In summary, APM combines the best practices of waterfall and agile. The first one

were designed to deal with complexity, but not uncertainty, while the latter were

designed to deal with uncertainty but not complexity. In this sense, APM manages

risks and tracks the critical path while recognizing that our knowledge is incomplete

at the beginning of the project, and it grows as the project advances.

Making use of this methodology, the engineering tasks are organised as follows:

6.1.3 Waterfall approach

This approach will be followed during the first stage of the project, when the System

Concept is to be designed. During this stage, the consortium will carry out the

following tasks:

▪ Analyse the current state-of-the-art technology and market trends

▪ Gather requirements from potential end-users.

▪ Design a generalized concept of the solutions based on the previous tasks.

▪ Describe the different sub-systems and services involved.

▪ Describe the features to implement

▪ Identify and categorize the potential risks associated with hindering the

successful implementation of the designed solution.

In the end, this concept will be used as a Minimum Viable Product, that can be

validated with the potential end-users during the next stages of the project.

Besides this first stage, when the project comes to an end, the work plan once again

follows the waterfall paradigm.

6.1.4 Agile approach

Following a SCRUM-like process, the next stages will be fully iterative for both the

research activities and the implementation of the technological development. The work

to be carried out under these WPs will be organized in monthly Sprints. The scope of

each Sprint will be planned before its start, prioritizing the most critical issues (i.e. the

issues that reduce the risks of highest impact, and provide the highest value to the end-

users). Depending on the purpose, a Sprints can be devoted to:

▪ Experimentation. In this scenario, there can be several

experimental/exploratory lanes running in parallel with the purpose of validating

different hypotheses, exploring the technical capacities of a technology, or

evaluating the viability of a specific feature. At the end of the sprint, the outcome

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 49

Confidentiality: Public

would be an accepted or rejected hypothesis. If accepted, it could result in

further development of a feature in next sprints, or in the adoption of a new

technology.

▪ Implementation. When the purpose of the Sprint is non-experimental, the team

will schedule the implementation of features at the planning session. The result

of these Sprints will be functional prototypes of the sub-systems, services or

features that will incrementally grow iteration after iteration. The RTD partners

responsible for a technical feature will have an end-to-end responsibility,

developing the full stack of the feature and testing it to demonstrate its correct

operation. The partners acting as end-users of the solution will validate/accept

the outcomes of each Sprint in their own contexts.

▪ Through these iterations we will incrementally gain knowledge about the final

solution, and the process itself, providing lessons learned at the beginning of

each sprint, and leaving room to schedule the implementation of new

requirements (introduced by end-users, the market trends or other research

projects).

The prototypes resulting from the research and technological development stages will

be integrated into a Full Prototype. This prototype will be validated in real business

conditions in order to provide feedback to fix bugs (if necessary). In order to prevent

critical issues at the integration stage, the end-users will be involved in the validation

phase of each sprint.

It is important to remark that some tasks and work packages (such as the Architecture

Definition, or WP2 and WP3), are expected to receive intense feedback during the last

months of the project, i.e. after they finalize. However, they will remain active until

the end of the project, since they can obtain valuable feedback at any time during the

project.

6.2 Implementation Schedule

The three main releases for the SmartCLIDE platform are:

▪ Early Prototype in M20

▪ Full Prototype in M30

▪ Final Prototype in M36

The implementation schedule envisages that the Early Prototype will contain

implementations of each SmartCLIDE component, whereby each component will

implement a defined subset of all features that are planned for each component.

The goal for the Early Prototype is to provide a functional prototype, which supports

a defined usage scenario that can be tested and evaluated in each of the pilot cases.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 50

Confidentiality: Public

Figure 16 SmartCLIDE Development Roadmap

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 51

Confidentiality: Public

The SmartCLIDE consortium agreed on the following roadmap to reach this goal - see

Figure 16 and Table 13 below. The roadmap schedules a milestone for each month on

the way to the Early Prototype in M20. Each milestone from M14 on shall result in an

integrated intermediate release of the SmartCLIDE platform, which can be deployed

and tested by the pilot case partners. Each integrated intermediate release of the

SmartCLIDE platform will implement additional functionality as well as take into

account feedback from the pilot case partners’ testing of the previous release.

Table 13: SmartCLIDE Development Roadmap

Milestone Description

M11
• common development approach defined and agreed

• common source code repository set up

• decisions on which existing SW SmartCLIDE components may be

based on finalised

M12
• usage scenario defined

• features to develop for EP selected

• SmartCLIDE runtime environment set up

• development infrastructure set up

M13
• specification of internal cross-component APIs for EP finalised

• specification of public API for EP finalised

M14
• first version of backend implemented, containing only the internal

cross component API and public API endpoints for EP, with

mocked backend functionality

• first version of user interfaces implemented, displaying mocked

data

• integrated SmartCLIDE platform version EP-alpha-1

M15
• APIs for EP refined and finalised

• second version of backend functionality implemented

• second version of user interfaces implemented

• integrated SmartCLIDE platform version EP-alpha-2

M16
• third version of backend functionality implemented

• third version of user interfaces implemented

• integrated SmartCLIDE platform version EP-beta-1

M17
• fourth version of backend functionality implemented

• fourth version of user interfaces implemented

• integrated SmartCLIDE platform version EP-beta-2

M18
• fully integrated SmartCLIDE platform version EP-RC-1,

containing all features planned for EP (feature-complete)

M19
• test and evaluation of SmartCLIDE platform version EP-RC-1 by

pilot case partners

• fully integrated SmartCLIDE platform version EP-RC-2

M20
• fully integrated SmartCLIDE platform version EP-RELEASE

The SmartCLIDE Full Prototype will be based on the Early Prototype, and implement

the remaining functionality, which has not been included in the Early Prototype. It will

in general follow a similar roadmap as defined for the Early Prototype, but make

necessary adjustments based on experiences from Early Prototype development. A

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 52

Confidentiality: Public

detailed roadmap will be published on the SmartCLIDE repository / wiki after

finalising the Early Prototype (M20).

For the Final Prototype in M30, the consortium will focus on implementing feedback

from the Full Prototype assessment and continue to release intermediate versions of

the SmartCLIDE platform on a monthly basis. A detailed roadmap will be published

on the SmartCLIDE repository / wiki after finalising the Full Prototype (M30).

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 53

Confidentiality: Public

7 Conclusions

The present deliverable followed the conceptualization and system work conducted in

Tasks 1.2, 1.3 and 1.4, and capitalized on their outcomes, that is D1.2, D1.3 and

primarily D1.4, and proceeded to finalize this work by presenting in detail the

conceptual/logical components-based architectural view, the information

flows/communication view, the system deployment view, providing details on the

current practices in terms of deployment at pilots, as well as the delivery

plan/development roadmap of the SmartCLIDE platform. The requirements

engineering, design and architecture specification, within agile development

environments and as foreseen in SmartCLIDE workplan, is an ongoing process, thus

it is expected that updates will be introduced within the duration of the project.

 D1.5 The SmartCLIDE Architecture

09/11/2020 Version 1.0 54

Confidentiality: Public

References

1. OAuth 2.0 (2020). Available at: https://oauth.net/2/ , visited on 2020-09-10.

2. 2019. Flask, 2019 (2019). Available at: https://palletsprojects.com/p/flask/ , visited

on 2019-10-18.

3. 2019. Python Eve, 2019 (2019). Available at: http://docs.python-eve.org/en/stable/

, visited on 2019-10-16.

4. MySQL (2020). Available at: https://www.mysql.com/ , visited on 2020-10-09.

5. 2019. MongoDB, 2019 (2019). Available at: https://www.mongodb.com/ , visited

on 2019-10-10.

6. Apache Kafka (2019). Available at: https://kafka.apache.org/ , visited on 2019-12-

12.

7. Apache Qpid (2020). Available at: https://qpid.apache.org/ , visited on 2020-10-09.

https://oauth.net/2/
https://palletsprojects.com/p/flask/
http://docs.python-eve.org/en/stable/
https://www.mysql.com/
https://www.mongodb.com/
https://kafka.apache.org/
https://qpid.apache.org/

