

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SmartCLIDE Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the SmartCLIDE Project Partners.

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 871177

Deliverable D3.1

Early SmartCLIDE Cloud IDE Design

WP 3

Project Acronym & Number: SmartCLIDE – GA 871177

Project Title:

Smart Cloud Integrated Development Environment

supporting the full-stack implementation, composition

and deployment of data-centered services and

applications in the cloud

Status: Draft for the internal review

Dissemination Level: Public

Authors: CERTH

Contributors: All Partners

Document Identifier: D3.1 Early SmartCLIDE Cloud IDE Design

Date: 29.09.2021

Revision: 1.0

Project website address: www.smartclide.eu

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 2

 Confidentiality: Public

Project Partners

Institut für angewandte Systemtechnik Bremen GmbH (ATB), Germany

Intrasoft International SA (INTRA), Luxembourg

Fundacion Instituto Internacionale de Investigacion en Intelligencia Artificial y Ciencias de

la Computacion (AIR), Spain

University of Macedonia (UoM), Greece

Ethniko Kentro Erevnas Kai Technologikis Anaptyxis (CERTH), Greece

X/OPEN Company Limited (TOG), United Kingdom

Eclipse Foundation Europe GMBH (ECLIPSE), Germany

Wellness Telecom SL (WT), Spain

Unparallel Innovation LDA (UNP), Portugal

CONTACT Software GmbH (CONTACT), Germany

Kairos Digital, Analytics and Big

Data Solutions SL (KAIROS DS), Spain

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 3

 Confidentiality: Public

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Document Control

Version Notes Date

0.1 Creation of the document 25.03.2021

0.2 End-to-end demonstration use case 15.04.2021

0.3 First inputs from technology providers 10.06.2021

0.4 Components diagrams and corresponding documentation templates 20.07.2021

0.5 Design Approach Completed 25.08.2021

0.6 Runtime Monitoring and Simulation Updates 26.08.2021

0.7 DLE, Smart Assistant and Service Discovery Update 07.09.2021

0.8 Document circulated for the internal review 08.09.2021

0.9
Service Deployments and Runtime Simulation and Monitoring Console

input included
25.09.2021

1.0 Review comments addressed and document finalized for submission 29.09.2021

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 4

 Confidentiality: Public

Abbreviations

AA Audit Agent

ABRV
Assumption-based

Runtime Verification

ACID

Atomicity,

Consistency, Isolation

and Durability

AI Artificial Intelligence

AMQP
Advanced Message

Queuing Protocol

API

Application

Programming

Interfaces

AWS Amazon Web Service

BERT

Bidirectional Encoder

Representations from

Transformers

BiLSTM
Bidirectional Long

Short-Term Memory

BoW Bag of Words

BPMN
Business Process

Model and Notation

CD Continuous Delivery

CI Continuous Integration

CLI
Command Line

Interface

CM Create Model

CNN
Convolutional Neural

Network

CPS
Create Property

Specification

CSV
Comma-separated

Values

DL Deep Learning

DLE Deep Learning Engine

DoA Description of Action

e.g
exempli gratia = for

example

EPP Event Processing Point

ERP
Event-Response

Packages

FN False Negative

FP False Positive

GA Grant Agreement

HTML
Hypertext Markup

Language

HTTP
Hypertext Transfer

Protocol

IaaS
Infrastructure as a

Service

IAM
Identity and Access

Management

IDE

Integrated

Development

Environment

ISS
Import Service

Specification

JSON
JavaScript Object

Notation

LA Logging Agent

LSP
Language Server

Protocol

LSTM
Long Short-Term

Memory

LTL Linear Temporal Logic

M Month

MC Monitor Creation

MCAPI Monitor Creation API

MDA
Model-Driven

Architecture

MEAPI Monitor Event API

MF
Monitoring

Framework

ML Machine Learning

MOM
Message-Oriented

Middleware

MQTT
Message Queuing

Telemetry Transport

MRAAPI
Monitor Request and

Administration API

MT
SVM Model

Templates

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 5

 Confidentiality: Public

MVC
Model-View-

Controller

NA Notification Agent

NLP
Natural Language

Processing

NLTK
Natural Language

Toolkit

NN Neural Network

OSGi
Open Service Gateway

Initiative

PaaS Platform as a Service

PST
Property Specification

Templates

QoS Quality of Service

QSA
Quantitative Security

Assessment

R Recall

REST
Representational State

Transfer

RMI
Remote Method

Invocation

RMV
Runtime Monitoring

and Verification

RNN
Recurrent neural

Network

SaaS Software as a Service

SDLC
Software Development

Life Cycle

SOA
Service-Oriented

Architecture

SOAP
Simple Object Access

Protocol

SSAS

Security-related Static

Analysis

Subcomponent

SSH Secure Shell

STOMP

Streaming Text

Oriented Messaging

Protocol

SVM
Support Vector

Machine

TCP
Transmission Control

Protocol

TN True Negative

TP True Positive

UI User Interface

UML
Unified Modelling

Language

URL
Uniform Resource

Locator

VP
Vulnerability

Assessment

VPM
Vulnerability

Assessment Models

VS Visual Studio

WSDL
Web Services

Description Language

XML
Extensible Markup

Language

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 6

 Confidentiality: Public

Executive Summary

Deliverable “D3.1 Early SmartCLIDE IDE Design” is part of WP3 and is produced as the main outcome

of Task 3.1 “Design, development and unit testing of the User Interface”, Task 3.2 “Design, development

and unit testing of the Deep Learning Engine”, and Task 3.3 “Design, development and unit testing of the

Backend Services”. The main objective of WP3 is to design, develop, and unit test the three main

SmartCLIDE framework components, namely User Interface (UI), Deep Learning Engine (DLE), and the

Backend Components. The purpose of this deliverable is to report the early design approach and technical

progress that has been conducted until M20. The emphasis is given on the front and backend of the

SmartCLIDE Integrated Development Environment (IDE). This deliverable is based on the outcome of

previous WP1 deliverables, namely “D1.4 the SmartCLIDE Concept” and “D1.5 Design of SmartCLIDE

Architecture”. Besides, there is a strong link with WP2, where technology providers have performed

research-oriented tasks, which have been documented in “D2.1 SmartCLIDE Innovative Approaches and

Features on Services Discovery, Creation, Composition, and Deployment”. This is the first version of

deliverable, which is going to be updated in M30.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 7

 Confidentiality: Public

Table of Contents

1 Introduction .. 14

1.1 Document Purpose ... 14

1.2 Approach .. 14

1.3 Document Structure .. 16

1.4 Relation to other deliverables ... 16

1.5 Contributors .. 16

2 User Interface .. 17

2.1 Frontend User Interface .. 17
2.1.1 Design ... 17
2.1.2 Technical approach ... 21
2.1.3 Image .. 23

2.2 Run-time Simulation and Monitoring Console .. 26
2.2.1 Design Approach .. 26
2.2.2 Cost-analysis Tool .. 29

2.3 Smart Assistant ... 29
2.3.1 Design Approach .. 29
2.3.2 Interface Specification .. 32

3 Deep Learning Engine .. 38

3.1 DLE Problem Specification .. 38
3.1.1 Design Approach .. 38
3.1.2 Interface Specification .. 41
3.1.3 Service Classification.. 43
3.1.4 Code Generation ... 44
3.1.5 Datasets ... 44
3.1.6 Data Processing ... 45

3.2 Machine Learning and Deep Learning Algorithms .. 47
3.2.1 Service classification .. 47
3.2.2 Code Generation ... 47

3.3 Implementation ... 49
3.3.1 Service Classification.. 49
3.3.2 Code Generation ... 51
3.3.3 Acceptance test based on Gherkin .. 52
3.3.4 Items Recommender in a BPMN Workflow ... 54
3.3.5 Tools and Infrastructure .. 54

3.4 Context Handling ... 55
3.4.1 Context Monitoring Specification ... 55
3.4.2 Context Extraction Specification .. 62

4 Backend Services .. 66

4.1 Source code repository ... 68
4.1.1 Technology Choice ... 68
4.1.2 Items to be Stored in Source Code Repository ... 69
4.1.3 Branching Strategies ... 69
4.1.4 GitLab APIs .. 70

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 8

 Confidentiality: Public

4.2 Discovery of Services and Resources... 71
4.2.1 Design Approach .. 71
4.2.2 Interface Specification .. 73
4.2.3 Crawlers .. 75
4.2.4 Internal Services Index ... 75
4.2.5 New service creation ... 77
4.2.6 Search services .. 77

4.3 Service Creation, Composition and Testing ... 78
4.3.1 Design Approach .. 78
4.3.2 Interface Specification .. 83

4.4 Run-time Monitoring & Verification ... 87
4.4.1 Support for services developed with SmartCLIDE ... 87
4.4.2 Support to other SmartCLIDE components .. 87
4.4.3 Design Approach .. 87
4.4.4 Interface Specification .. 93
4.4.5 RMV Component, Modules and Submodules .. 95

4.5 Security ... 99
4.5.1 Vulnerability Assessment ... 99
4.5.2 Security related Static Analysis .. 102
4.5.3 Interface Specification .. 107

4.6 Intercommunication .. 109
4.6.1 Background Information ... 110
4.6.2 Design Approach .. 117
4.6.3 Interface Specification .. 120

4.7 User Access Management .. 122
4.7.1 Keycloak ... 123
4.7.2 Keyclock and Eclipse Che .. 127

4.8 Deployment [WT] .. 128
4.8.1 Design Approach .. 128

4.8.2 Third-party services .. 129

4.8.3 Workflow .. 130
4.8.4 Docker-based deployment .. 130

4.9 SmartCLIDE CI/CD ... 131
4.9.1 Design Approach .. 131
4.9.2 Interface Specification .. 133

5 SmartCLIDE Testing Approach ... 134

5.1 Test levels ... 134

5.2 Testing tools and frameworks .. 135

5.3 Testing Documentation Template .. 135

6 Conclusions.. 137

7 Annex A: Wireframes of the IDE .. 138

8 Annex B: End-to-End Scenario Use Case ... 158

9 Annex C: Eclipse Theia Analysis... 163

10 References.. 170

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 9

 Confidentiality: Public

List of Figures

Figure 1: Approach applied for early SmartCLIDE design .. 14

Figure 2: Design approach procedure ... 17

Figure 3: SmartCLIDE IDE base page ... 18

Figure 4: SmartCLIDE IDE base page with auxiliary tools ... 18

Figure 5: The architecture of the SmartCLIDE IDE ... 22

Figure 6: The color pallet of the SmartCLIDE IDE .. 23

Figure 7: Fonts of the SmartCLIDE IDE .. 24

Figure 8: Buttons of the SmartCLIDE IDE .. 24

Figure 9: Graphs and charts of the SmartCLIDE IDE .. 25

Figure 10: Theia theme of the SmartCLIDE I .. 26

Figure 11: UML Run-Time Simulation & Monitoring / Visualization Component Diagram 27

Figure 12: Smart Assistant Component Diagram as DLE interface ... 30

Figure 13: BPMN Suggestions Architecture .. 37

Figure 14 DLE Component Diagram .. 39

Figure 15 Automatic Code Generation Related Approaches Classification in SE and AI 48

Figure 16 The scheme of Classes and used packages in DLE component ... 49

Figure 17 Hybrid supervised/unsupervised approach to classify web services .. 50

Figure 18 HTTP request and response example for service classification sub-component API 51

Figure 19 Acceptance Test Suggestion Model .. 52

Figure 20 CBR cycle to obtain the acceptance test for an input BPMN ... 53

Figure 21: Context Handling Component ... 55

Figure 22: Recurrent monitoring process.. 56

Figure 23: Example of Monitoring Configuration .. 57

Figure 24: Class diagram of the Context Monitoring Service .. 57

Figure 25: Class diagram of the Monitoring Repository Service ... 58

Figure 26: Class diagram of the System Monitors .. 59

Figure 27: Class Diagram of the Parsers ... 60

Figure 28: Class Diagram of the Analysers .. 60

Figure 29: Class Diagram – Monitoring Data Model ... 61

Figure 30: Class diagram of the Context Extraction Service .. 63

Figure 31: Class diagram of the Context Repository Service ... 64

Figure 32: Class Diagram – Context Identifiers ... 65

Figure 33: Component - based SmartCLIDE architecture update .. 67

Figure 34: Hierarchical Group Structure in GitLab .. 69

Figure 35: Example request to GitLab REST API to create a new Project .. 70

Figure 36: Discovery of Services and Resources Component Diagram ... 72

Figure 37: Pipeline of the data extraction process .. 75

Figure 38: Required Attributes ... 77

Figure 39: Service Creation end point .. 78

Figure 40: The Cumulative Interest Service Request ... 79

Figure 41: Cumulative Interest Service Response .. 79

Figure 42: Interest Change Request .. 79

Figure 43: Interest Change Response.. 79

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 10

 Confidentiality: Public

Figure 44: Files and High Interest Request ... 80

Figure 45: Files and High Interest Response .. 80

Figure 46: Reusability Index by Commit Request .. 81

Figure 47: Reusability Index by Commit Response ... 81

Figure 48: Reusability Index by Commit Request .. 81

Figure 49: Reusability Index per Commit Response .. 82

Figure 50: Service Creation, Composition and Testing Component Diagram ... 82

Figure 51: Run-time Monitoring and Verification Component Diagram ... 88

Figure 52: The request and response of the Vulnerability Assessment service for the C++ Use Case 101

Figure 53: The request and response of the Vulnerability Assessment service of the Java Use Case 102

Figure 54: The request that needs to be submitted for analysing a Java project using the SSAS service 105

Figure 55: The response (i.e., evaluation report) of the SSAS service for the Java use case 105

Figure 56: The request submitted for analysing a Python project using the SSAS service 106

Figure 57: The response of the SSAS service using Python project ... 106

Figure 58: Software Security Assurance Module ... 107

Figure 59: Quantitative Security Assessment Subcomponent .. 107

Figure 60: 2Vulnerability Prediction Subcomponent ... 107

Figure 61: Apache Kafka Architecture ... 111

Figure 62: RabbitMQ message flow ... 112

Figure 63: Message queues and rates .. 113

Figure 64: Declared message exchanges .. 114

Figure 65: Declared queues .. 114

Figure 66: Integration of Spring AMQP into Spring boot application ... 115

Figure 67: Configuration of the RabbitMQ server .. 115

Figure 68: An example of the @RabbitListener annotation ... 116

Figure 69: MOM Component Diagram .. 119

Figure 70: Keycloak Sequence Diagram .. 123

Figure 71: Keycloak Master Realm .. 124

Figure 72: Creating a new realm (1/2) .. 125

Figure 73: Creating a new realm (2/2) .. 125

Figure 74: New user .. 126

Figure 75: Role Assignment ... 126

Figure 76: Client application configuration .. 126

Figure 77: Configuring Eclipse Che to work with an existing Keycloak server (1/2) 127

Figure 78: Configuring Eclipse Che to work with an existing Keycloak server (2/2) 128

Figure 79: Set of Applications Diagram. Workflow ... 129

Figure 80: CI Server & Testing and QA Component Diagram .. 132

Figure 81: Example test case reported using the SmartCLIDE Test Case Template 135

Figure 82: The main page of the SmartCLIDE platform .. 138

Figure 83: Settings Page ... 138

Figure 84: The content configuration page of the dashboard ... 139

Figure 85: The user profile page ... 140

Figure 86: The team configuration page ... 140

Figure 87: Sources for services ... 141

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 11

 Confidentiality: Public

Figure 88: User credentials management page ... 142

Figure 89: The main page of the workflows ... 142

Figure 90: Workflow configuration page .. 143

Figure 91: An instance of the diagram editor ... 144

Figure 92: Task Properties within the diagram editor ... 144

Figure 93: Task Functionality within the diagram editor.. 145

Figure 94: An instance of the Theia code editor ... 145

Figure 95: Adding a new shortcut to "Quick Access" .. 146

Figure 96: Service discovery configuration page ... 147

Figure 97: No results found by the service discovery ... 147

Figure 98: Workflow integration in the diagram editor .. 148

Figure 99: Security analysis page ... 148

Figure 100: Vulnerability assessment page .. 149

Figure 101: The main page of the services ... 149

Figure 102: The main configuration page of a service ... 150

Figure 103: Smart Assistant services: Code autocompletion .. 151

Figure 104: Smart Assistant services: Live template recommendation .. 151

Figure 105: Smart Assistant services: Comments generation ... 152

Figure 106: The main page of the deployments .. 153

Figure 107: The main configuration page of a deployment .. 153

Figure 108: The deployment configuration page .. 154

Figure 109: The deployment configuration suggestions ... 155

Figure 110: Main page of the cost comparison service... 156

Figure 111: Runtime metrics selection page ... 156

Figure 112: Runtime metrics monitoring and visualization page ... 157

Figure 113: Theia extension mechanism .. 168

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 12

 Confidentiality: Public

List of Tables

Table 1: SmartCLIDE Architectural Views .. 15

Table 2: An overview on the wireframes of the SmartCLIDE IDE .. 19

Table 3:Smart Assistant One Line Code Generation .. 31

Table 4: Smart Assistant Code Repository ... 31

Table 5: Smart Assistant Environment Component .. 31

Table 6: Smart Assistant Acceptance Test Suggestions Subcomponent .. 31

Table 7: Smart Assistant BPMN Items Suggestions Subcomponent .. 32

Table 8: Smart Assistant Interface Specification .. 32

Table 9: Service Classification Model .. 38

Table 10: Template based agent Code Generation ... 40

Table 11: Code Generation Auto-complete Model ... 40

Table 12: Code Repository Suggestions Model .. 40

Table 13: Deployment environment suggestions Model .. 40

Table 14: Acceptance test Suggestions Model ... 41

Table 15: BPMN Items suggestions.. 41

Table 16: Predictive Model tool API .. 41

Table 17 Example of functions for preprocessing source code corpora ... 46

Table 18: Process Stage Details for Providing Training Dataset for Web Service Classification 46

Table 19: Literature Review ... 48

Table 20: Context Monitoring Subcomponent.. 55

Table 21: Context Extraction Subcomponent ... 55

Table 22: Context Monitoring Interface ... 61

Table 23: Context Extraction Subcomponent Interface .. 65

Table 24: Discovery of Services & Resources Crawlers .. 71

Table 25: Discovery of Services & Resources Internal Services Index .. 71

Table 26: Discovery of Services & Resources - Repository of discovered services 73

Table 27: Discovery of Services & Resources New Services Creation .. 73

Table 28: Discovery of Services & Resources Search Services ... 73

Table 29: Discovery of Services and Resources Interface Specification .. 73

Table 30: Service Creation, Composition & Testing Subcomponent ... 82

Table 31: TD Principal and Interest Subcomponent ... 83

Table 32: Reusability Index Subcomponent ... 83

Table 33: Service Creation, Composition and Testing Subcomponent .. 83

Table 34: RMV subcomponent Monitor Creation (RMV-MC) .. 89

Table 35: RMV subcomponent Monitor Library (RMV-ML) .. 91

Table 36: RMV subcomponent Monitoring Framework (RMV-MF) ... 91

Table 37: RMV subcomponent Audit Agent (RMV-AA) .. 91

Table 38: RMV subcomponent Logging Agent (RMV-LA) .. 92

Table 39: RMV subcomponent Notification Agent (RMV-NA) .. 92

Table 40: Run-time Monitoring and Verification Subcomponent Interface ... 93

Table 41: Hyper-parameters of BERT base model ... 101

Table 42: Software Security Assurance Component Interfaces .. 108

Table 43: MOM publish/subscribe messaging ques ... 117

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 13

 Confidentiality: Public

Table 44: MOM Message Checker Subcomponent .. 120

Table 45: MOM Message Transformer Subcomponent.. 120

Table 46: MOM Message Router Subcomponent ... 120

Table 47: MOM Component Interfaces .. 121

Table 48: CI Server & Testing .. 132

Table 49: CI Server & Testing and QA Component Interface Specification .. 133

Table 50: End-to-end demonstration Use Case ... 158

Table 51: Advantages and disadvantages of Theia ... 169

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 14

 Confidentiality: Public

1 Introduction

1.1 Document Purpose

Deliverable “D3.1 Early SmartCLIDE IDE Design” is part of WP3, and is produced as the main outcome

of:

▪ Task 3.1 “Design, development and unit testing of the User Interface”,

▪ Task 3.2 “Design, development and unit testing of the Deep Learning Engine”, and

▪ Task 3.3 “Design, development and unit testing of the Backend Services”.

The main objective of WP3 is to design, develop, and unit test the three main SmartCLIDE framework

components, namely User Interface (UI), Deep Learning Engine (DLE), and the Backend Components. The

purpose of this deliverable is to report the early design approach and technical progress that has been

conducted until M20. The emphasis is given on the front and backend of the SmartCLIDE Integrated

Development Environment (IDE). This deliverable is based on the outcome of previous WP1 deliverables,

namely “D1.4 the SmartCLIDE Concept”[1] and “D1.5 Design of SmartCLIDE Architecture”[2]. Besides,

there is a strong link with WP2, where technology providers have performed research-oriented tasks, which

have been documented in “D2.1 SmartCLIDE Innovative Approaches and Features on Services Discovery,

Creation, Composition, and Deployment”[3].

1.2 Approach

The early design of SmartCLIDE components presented in this deliverable is a result of the process already

started in task “T1.4 Design of SmartCLIDE System Concept”, and task “T1.5 Design of SmartCLIDE

Architecture” as illustrated in Figure 1 below.

Figure 1: Approach applied for early SmartCLIDE design

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 15

 Confidentiality: Public

The approach we followed in this document is based on the foundation laid out in D1.5 and the introduced

agile development approach [4]. Following a SCRUM-like process, we have organized regular bi-weekly

Sprints between all developers to discuss the most important ongoing research and implementation issues.

The scope of each Sprint was planned, prioritizing the most critical issues according to the initial timeline

and microplanning performed at the beginning of the WP3 (i.e., M10). Initial microplanning was performed

in collaboration with the WP2 leader to synchronize research-related tasks and efforts in WP2 and

complementary design and implementation activity in WP3. Regular monthly WP2-WP3 calls were held

to closely track the progress.

Following the good practice applied in D1.2, D1.3, D1.4, and D1.5, this document has been structured

according to the concept and terms of the ISO/IEC/IEEE 42010:2011 [5] . The overview of architectural

views which are addressed in D1.2, D1.3, D1.4, and D1.5 is presented in Table 1.

Table 1: SmartCLIDE Architectural Views

 Architectural Views Corresponding Deliverable

1 Functional Requirements View Functional Requirements have been documented in D1.2 and

mapped to SmartCLIDE system use cases in D1.3

2 Components Specification View This view presents the detailed description of each

component of the system. This view has been presented in

D1.4 for each individual component focusing on description

of core functionalities.

3 Operational Environment View This view describes the conceptual way the system operates

in its context, components that describe the system and user

groups with which they interact. These topics have been

discussed in D1.3 and D1.4. Besides, the Component

Architecture Diagram of the overall SmartCLIDE system is

included in D1.5.

4 Information Flow View This view defines information entities and corresponding

relationships between them. This view is one of the key

outputs of the D1.5.

5 System Deployment View This view will present the deployment view of the integrated

system.

Keeping in mind that various design and architecture specifications have already been presented in WP1

SmartCLIDE deliverables, we focused on the detailed elaboration of Components Specification,

Operational environment, and Information Flow views. The starting point of our analysis was the overall

SmartCLIDE component diagram documented in the D1.5 The SmartCLIDE Architecture (see page 12,

figure 2) [2]. Considering specific WP3 objectives, we have performed the following steps for the

SmartCLIDE concept elaboration and early design specification:

▪ Step 1: UI Design

o Step 1.1: Detailed analysis of UI Mock-ups from D1.4

o Step 1.2: Specification of the end-to-end demonstration use case (in terms of Mock-ups)

o Step 1.3: Analysis of the required external tools and plugins

o Step 1.4: Theia design and small-scale prototype implementation (proof of concept)

▪ Step 2: Detailed Specification of the Frontend & Backend Components

o Step 2.1: Detailed analysis of the D1.5 with particular focus on overall component and

information flow diagrams

o Step 2.2: Creation of the instructions and templates for the elaboration and design of

individual components

o Step 2.3: Collection of the relevant contributions from the following component providers

▪ Run-time Simulation and Monitoring Console (WT)

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 16

 Confidentiality: Public

▪ Smart Assistant (AIR)

▪ Deep Learning Engine (AIR)

▪ Context Handling (ATB)

▪ Source Code Repository (INTRA)

▪ Discovery of Services and Resources (AIR)

▪ Service Creation, Composition and Testing (UoM)

▪ Run-time Monitoring and Verification (TOG)

▪ Security (CERTH)

▪ Message-Oriented-Middleware (CERTH)

▪ Service Deployment (WT)

▪ CI/CD Component (INTRA)

o Step 2.4: Design of the overall SmartCLIDE detailed component diagram.

1.3 Document Structure

The document consists of the following sections:

▪ Section 1 includes a concise overview of the overall content of the document

▪ Section 2 presents User Interface design approach and gives an overview of the Run-time

Simulation and Monitoring Console and Smart Assistant frontend components

▪ Section 3 outlines Deep Learning Engine design approach with a particular focus on presentation

of machine learning and deep learning algorithms and support for service classification. Besides,

it presents updated design approach for the Context Handling component.

▪ Section 4 presents the design approach and key features on the SmartCLIDE backend components.

▪ Section 5 describes the overall unit testing approach

▪ Section 6 provides the concluding remarks and outlines future steps.

1.4 Relation to other deliverables

The present deliverable completes the design and specification of the SmartCLIDE system together with

D1.2, D1.3, D1.4, and D1.5. It receives input from all these deliverables and primarily from D1.5 using the

overall SmartCLIDE component and information flow diagrams as a starting point for the analysis. One of

the key outputs of the present deliverable is elaborated component diagrams based SmartCLIDE

architecture, including the specification of provided/required interfaces. Besides, this deliverable is strongly

linked to D2.1, where underlying research approaches for relevant components are discussed.

1.5 Contributors

All project partners have substantially contributed to this deliverable. In particular, the RTD partners and

technology providers have provided detailed designs of their components and underlying services. UNP

has led the overall UI design, while KAIROS has performed the Theia analysis and implemented a small-

scale prototype. AIR has led the design effort of the DLE together with ATB, who supported the Context

Handling part. CERTH has acted as overall editor in preparing each version of the document using a

collaborative and iterative approach.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 17

 Confidentiality: Public

2 User Interface

This section describes the design progress of the main components of the User Interface of SmartCLIDE

IDE integrating all the functionalities provided by SmartCLIDE technologies and exposing them as a

development experience to developers.

2.1 Frontend User Interface

The specification and development of IDE Front-End is composed 2 processes: Design Lifecycle and

Project Implementation.

The Design Lifecycle corresponds to the steps followed for the design of User Interfaces. The design life

cycle started with the specification of the graphical elements that each SmartCLIDE technology will require

to interact with users, which resulted in a set of wireframes (detailed description of the wireframes produced

in this analysis are provided in Annex A). The purpose of the wireframes is to communicate the order,

structure, layout, navigation, and organization of content rather than defining the final the graphical aspects.

The next steps will consist of enhancing the wireframes with more detailed graphical elements to create the

mock-ups. Mock-ups communicate the visual design aspects that wireframes do not. These include

imagery, colour, and typography, giving a sense of what the design will look like and provide guidelines

for the implementation of the visual aspects, as represented in Figure 2.

Figure 2: Design approach procedure

The Project Implementation process corresponds to the creation of the software project that will be used

for the implementation of the IDE front-end and will be used by SmartCLIDE partners for the

implementation of the base infrastructure of the IDE and all the functionalities that will be provided by the

SmartCLIDE tools on the backend. This process also includes the definition of the IDE’s image were the

graphical tools used on the project were configured to present the defined image.

2.1.1 Design

2.1.1.1 Layout

The pages of SmartCLIDE IDE follow a common structure as represented in Figure 3. On the top of the

page there are some graphical elements to provide a quick access to specific IDE functionalities. From left

to right are presented the Logo of the IDE that redirects to the Dashboard, the Settings icon that provides

access IDE settings and the User icon to provide access to user-specific settings.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 18

 Confidentiality: Public

Figure 3: SmartCLIDE IDE base page

Below those elements, we can find 2 main areas: The Context Bar and the Working Area. Those elements

are related in the sense that the Working Area presents the main content of the different pages of the

SmartCLIDE IDE and the Context Bar adapts to the content presented in the Working area, showing a set

of options that allow to navigate/initiate operations over the content shown.

On specific cases an extended view of this structure can be used. This structure, represented in Figure 4,

add a new area – the Auxiliary Tools – that can be used to provide the user with specific user interfaces that

allow to execute operations related with the content on the Working Area.

Figure 4: SmartCLIDE IDE base page with auxiliary tools

The concept of Workbench initial defined matches the mainly the concept of Working Area of the layouts,

as it is the main area where developers are expected to develop their applications. The concept of Toolbox,

in the sense that it provides to the user the resources and main functionalities of the SmartCLIDE tools, is

spread across several areas, resulting from the integration of SmartCLIDE backend functionalities on

different areas and element of the IDE frontend.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 19

 Confidentiality: Public

2.1.1.2 Wireframes

The front-end user interface was structured considering the three main pillars for the SmartCLIDE IDE

front-end which represent the main types of projects that can be created:

▪ Services – applications with a well-defined interface developed independently of external entities

(e.g., other services).

▪ Workflows – consist of the graphical representation of a system through diagrams, where each

node of the diagram represents a task than can be performed by a service.

▪ Deployments – configurations of deployments of services or workflows that run on remote

environments (e.g., Amazon Web Services).

Aside these 3 pillars, SmartCLIDE IDE must also provide other functionalities that will support the

activities and experience to the users. Those functionalities correspond to the:

▪ Dashboard – Customizable welcome page that the IDE user can organise to show him/her

relevant information.

▪ IDE settings – Set of options to customize the IDE settings and to monitor the runtime conditions

of the SmartCLIDE IDE

▪ User settings -Set of option to defined user-specific settings and configuration of aspects of the

user development space.

An overview of wireframes associated to the previous functionalities are shown in Table 2. More details

about each wireframe can be found in Annex A.

Table 2: An overview on the wireframes of the SmartCLIDE IDE

Workflows

The main page of the

workflows

Workflow

configuration page

An instance of the

diagram editor

Adding a new

shortcut to "Quick

Access"

An instance of the

Theia code editor

Task Functionality

within the diagram

editor

Task Properties

within the diagram

editor

Service discovery

configuration page

No results found by

the service discovery

Workflow

integration in the

diagram editor

Security analysis

page

Vulnerability

assessment page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 20

 Confidentiality: Public

Services

The main page of the

services

The main

configuration page of

a service

Smart Assistant

services: Code

autocompletion

Smart Assistant

services: Live

template

recommendation

Smart Assistant

services: Comments

generation

Deployments

The main page of the

deployments

The main

configuration page of

a deployment

The deployment

configuration page

Main page of the cost

comparison service

The deployment

configuration

suggestions

Runtime metrics

selection page

Runtime metrics

monitoring and

visualization page

Dashboard

The main page of the

SmartCLIDE

platform

The content

configuration page of

the dashboard

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 21

 Confidentiality: Public

IDE Settings

Settings Page

User Settings

The user profile page

The team

configuration page

Sources for services

User credentials

management page

As part of the validation process of the behaviour and navigation described on the wireframes, a potential

usage scenario in which the user (a developer) takes advantage of a wide range of SmartCLIDE

functionalities to implement test and deploy a workflow was defined and analysed against the wireframes.

This potential usage scenario is detailed in Annex B.

2.1.2 Technical approach

In this section are identified the technical approaches and technologies selected for to start of the

development of the SmartCLIDE IDE frontend.

2.1.2.1 Modular Development Approach

The functionalities will be added to SmartCLIDE IDE using a plugin-like approach, enabling functionalities

to be developed independently. With this modular, each plugin will use specific interfaces provided by

SmartCLIDE IDE, as well as implement interfaces defined by SmartCLIDE IDE to support the correct

integration of the development functionalities into the IDE.

The main interfaces that the developed modules have access to expose their functionalities are:

• Working Area interfaces – interface to render the specific content on the working area and listen to

user input events.

• Interfaces Context bar integration – Expose endpoints that are connected to the options on the

context bar defining the behaviour of the options listed.

• Interface for Auxiliary tools – Define the user interfaces for the extra tools that will be used by the

IDE users.

• Interface for Home Dashboard card integration – Interface the describe the widgets/cards that can

be visualised in the Dashboard.

• Interface with Quick Access shortcut – Interface to describe the commands that can be inserted in

the Quick Access menu, providing shortcuts that the developer can use to optimise his development

flow.

All the functionalities that require the definition of the User Interfaces should have a harmonised style to

provide the IDE user with a smother experience. To achieving this goal, developers of modules that provide

user interfaces are recommended to use SmartCLIDE style theme.

2.1.2.2 Support Technologies

The objective for SmartCLIDE Cloud IDE is to create a website intuitive for any user, regardless his/her

experience and role. The IDE should also present an appealing look and feel and extensible to support the

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 22

 Confidentiality: Public

usage and integration with external frameworks and libraries that can enhance the IDE functionalities and

performance. As a cloud IDE, SmartCLIDE IDE must allow multiple users to use it on their preferred

internet browsers, allowing users to use remotly the typical IDE functionalities, supported and enhanced by

SmartCLIDE tools. With that in mind, the architecture from Figure 5 was designed.

Figure 5: The architecture of the SmartCLIDE IDE

This diagram focuses on the frontend of the SmartCLIDE IDE, which needs to support the management

several user authentications simultaneously (e.g., User A, User B, etc.). Moreover, each user may access

the IDE in more than one browser tab at the same time, as represented in the cases of User A and User B

where these users may be working multiple projects at the same time. All these clients are connected to the

same server, requiring the server to be able to associate each client instance (each browser tab) to different

sessions and allowing to separate the context across the different client instances to provide them with the

required independency. From a higher-level perspective, the frontend directly communicates with the

backend of the IDE, which consists of all the SmartCLIDE tools that support the functionalities of the IDE

and are deployed somewhere in the Cloud.

For the implementation of the Server component of the Frontend it was decided to use the Meteor1

framework. This full-stack framework provides mechanisms that runs on the Client-side and on Server-side

of a Web application that supports the management of authentication process of multiple users, and

automatically creates contextualised sessions for each client instance where the same user is authenticated.

Moreover, Meteor also allow to expose a set of methods to the clients that are executed on the server-side.

This mechanism can be used on expose an API to all clients for the interactions with the SmartCLIDE IDE

backend. This mechanism supports development of a modular approach by providing a common API that

all the modules can use for providing their functionalities to the IDE frontend, while abstracting their code

from the management of the users and sessions.

Meteor can be complemented with the usage of frontend framework to increase the power on

implementation of the User Interface. The framework Vue.js2 was selected to assume the role. Vue.js

provides many modern concepts like code encapsulation and reuse thought the usage of components and a

reactivity system to optimise the re-rendering of objects. Vue.js distinguish between most of its peers by

allowing supporting the creation of Vue components using mostly technologies commonly used on Web

development: HTML, CSS and JavaScript. This reduces learning curve to start developing components

using Vue.js, which is an important requirement for ensuring a smooth development on a team where

members have different backgrounds.

SmartCLIDE IDE will require a code editor to support the activities to the developers. Eclipse Theia was

select to play this role, providing not only a modern text editor but also an ecosystem of plugins that can be

1 https://www.meteor.com
2 https://vuejs.org

https://www.meteor.com/
https://vuejs.org/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 23

 Confidentiality: Public

used to improve the whole developing lifecycle. In annex C is presented a study about Eclipse Theia main

features and approaches to develop plugins and extensions.

To support the development of responsive and visual harmonised interfaces a Bootstrap3 theme was

configured and added to the IDE project.

2.1.3 Image

The SmartCLIDE project image was the inspiration for the identification the IDE image. The colour scheme

used in the logo and project website and the cloud icon with the round look was used to define the colour

and graphical aspect of the element in the IDE.

2.1.3.1 IDE style

2.1.3.1.1 Colours

The SmartCLIDE font colour (blue) and the second colour in the icon (aqua) were the starter in the theme

building. They were stablished as the main and one of the secondary colours. We added some more colour

pallet so it can be used as the functions needed (e.g., red for delete, orange for warning, etc.).

To test, we implemented the theme style into a GitHub Project Demo4, where we can see how the behaviours

and colours of the several elements play along. The aspect is shown in Figure 6.

Figure 6: The color pallet of the SmartCLIDE IDE

3 https://getbootstrap.com
4 https://github.com/StartBootstrap/startbootstrap-sb-admin-2

https://getbootstrap.com/
https://github.com/StartBootstrap/startbootstrap-sb-admin-2

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 24

 Confidentiality: Public

2.1.3.1.2 Fonts

For the font, the Open Sans family was select to harmonise with the font used in the project website. The

default font sizes were kept.

Figure 7: Fonts of the SmartCLIDE IDE

2.1.3.1.3 Buttons

The overall aspect of the buttons are aligned with the default settings however, a customisation was made

to increase the round aspect in the corners of the buttons.

Figure 8: Buttons of the SmartCLIDE IDE

2.1.3.1.4 Guidelines for Graphs & Charts

In the graphs and charts, the recommended colours are two colours present in the logo (blue and aqua). If

the chart needs more colours, the secondary colours can be used. Some examples are presented in Figure

9.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 25

 Confidentiality: Public

Figure 9: Graphs and charts of the SmartCLIDE IDE

2.1.3.2 Integrated Code editor

The same image concept was applied to the Theia editor through the definition of a Theia theme. Since

Theia themes are compatible with the themes of VS Code, a VS Code theme editor5 was used to define the

SmartCLIDE Theia theme.

The colours of All Visual Studio Code sections (e.g., General, Activity Bar, Side Bar, Status Bar, Buttons,

Widgets, etc.) where customised to align with the colours defined in the Bootstrap theme. The result of the

SmartCLIDE Theia theme is presented in Figure 10.

5 https://themes.vscode.one

https://themes.vscode.one/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 26

 Confidentiality: Public

Figure 10: Theia theme of the SmartCLIDE I

2.2 Run-time Simulation and Monitoring Console

2.2.1 Design Approach

Developing, deploying, and monitoring complex systems such as the real-time

communication platform we previously described using containers is a tough task, but thanks

to SmartCLIDE, developers will be able not only to deploy it, but also to get:

▪ A better comprehension of real-time QoS constraints.

▪ A deeper insight into QoS, by providing monitoring tools that will allow the developer to track

quality of service and quality of experience.

▪ Easier management of deployed services.

In conclusion, SmartCLIDE will aid the developer throughout all the phases, such as development, testing,

and deployment. Then, once deployed, the IDE (Integrated Development

Environment) will supply visual monitoring tools to manage and extend running

capabilities, also providing a detailed analysis about QoS.

The “Run-time Simulation & Monitoring / Visualization” component will provide a front-end for

monitoring any of the containers, services and complex systems deployed with SmartCLIDE. Notice that a

complex system may be composed by several containers, and each container might include more than one

services that cooperate to solve a greater problem.

This interface will allow the developer to explore and visualize the status of deployed services through

visual and text-based elements by using a console that will form part of the SmartCLIDE UI. To do so, it

retrieves the monitoring data from the Run-time Monitoring & Verification component by using a Pub-Sub

paradigm.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 27

 Confidentiality: Public

Figure 11: UML Run-Time Simulation & Monitoring / Visualization Component Diagram

For example, the figure in the slide represents a generic use case for this component:

▪ First, the developer selects the container he wants to monitor by using the “Run-time Monitoring

and Simulation / Visualization” module in the SmartCLIDE UI.

▪ Then, the “Run-time Monitoring and Simulation / Visualization” component subscribes to the

“Run-time Monitoring & Verification” component by using an API.

▪ Then, the “Run-time Monitoring & Verification” component reports monitoring data from that

container.

▪ Finally, the “Run-time Monitoring and Simulation / Visualization” component represents

received run-time monitoring data using both, visual and text-based techniques.

SmartCLIDE provides the capability for non-programmers to construct applications and new services using

smart automation. Quality assurance of the constructed applications involves both design time and runtime

assurance. Assurance of the runtime behaviour is addressed by validating that the application exhibits

behaviour consistent with its specifications, and that the assumptions made about the runtime environment,

made at the time of the design of the construction approach, and thus built into the construction of the

application, continue to be valid as the application executes.

The intended behaviour of the application may involve both functional and non-functional properties. Key

characteristics of the application, such as security, safety, privacy, resilience and reliability are general

categories of runtime quality attributes that may be required.

Validity of environmental assumptions involves necessary conditions, under which the construction and

execution of the application are expected to be correct. The assumptions made by individual components

or services from which an application is composed, and the consequent assumptions of their composition,

need to be established and maintained during the execution of the application.

These concerns occur in statically constructed applications as well as those that are dynamically constructed

and executed on demand. However, in the dynamic case some runtime quality attributes arise that do not

exist in the static case. For example, in the dynamic case the identification of the components or services

to be composed, the correctness of the service composition, and testing of the composition arise during

construction runtime rather than during a conventional design, implementation, test and deployment cycle.

When an application is dynamically composed for a specific purpose, known properties of the component

services can be used to find composition solutions that yield a final property that suits the purpose.

However, because the dynamic case does not afford the same opportunity to apply the conventional

disciplines for assurance during design and implementation, or for conventional testing, the defining

property of the application as well as the assumptions should continue to hold during runtime.

The Runtime Monitoring and Verification (RMV) framework is intended to provide the capability for

constructed applications to be automatically monitored at runtime for their validity of their properties. If

the SmartCLIDE services creation, services discovery, services composition, and services deployment

functionalities are thought of as “programming for non-programmers”, then the runtime monitoring and

verification features provide integrated “runtime quality assurance for non-programmers”.

Though there is some technical risk of falling short of the most ambitious objectives due to these

uncertainties, the resulting monitoring framework will nonetheless provide several useful benefits:

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 28

 Confidentiality: Public

▪ The Runtime monitoring and verification components are used by the Context Handling system

to subscribe to get monitored data about runtime values and events that it needs to accomplish

its purpose.

▪ Developers using the service composition capabilities of SmartCLIDE will be able to develop

monitoring applications using the monitoring and sensor services that can detect sequences of

events specified by patterns specified by the monitoring application. These may be used to detect

exceptional conditions or may be integrated into the design of the application to enable a response

to monitored conditions external to the application.

▪ The security component can construct a monitoring application to monitor security relevant

events that other application services are designed to generate. These may be stored in the Log

as an audit trail for post-execution forensic investigations.

▪ Other subsystems can construct monitoring applications to assist with instrumentation, testing,

or debugging of applications or the SmartCLIDE platform itself.

The Runtime Monitoring and Verification (RMV) framework provides a flexible and configurable

framework with programmable interfaces to permit the construction of a monitoring application, using

standard or bespoke monitoring components and sensors, in parallel with the construction of a service-

oriented application. The framework will also provide for the capture and retention of data gathered by

sensors and monitoring applications in a log according to configurable criteria. The technical elements of

the approach include:

▪ A library of monitoring logic components for constructing monitoring applications.

▪ A library of sensor types that can be instantiated and installed within composed SOA applications

and infrastructure components to gather the data/events needed by monitoring applications.

▪ A mechanism for composing monitoring applications in parallel with the SOA application.

▪ An SOA execution framework for executing SOA applications, monitoring applications, the

monitor framework, and the agents.

▪ A notification mechanism that can transmit alerts to registered participants when monitored

events meet a specified condition.

▪ A method and mechanism for selecting monitoring components and sensors and constructing

appropriate monitoring applications according to the construction of a corresponding SOA

application.

▪ A mechanism for the collection and persistent storage of the Log of monitored data and

notifications.

▪ A mechanism for the configuration of log collection and storage, including where the Log is to

be stored, how large logs should be archived, etc.

The starting point for defining the concept of the “Runtime Monitoring and Verification” component is the

requirements analysis document. SmartCLIDE “Runtime Monitoring and Verification” component shall be

able to support:

▪ A flexible and configurable framework for the construction and deployment of diverse

monitoring applications.

▪ Programmable responses according to the findings of the monitoring applications, including

notifications to the application execution framework and activation of predefined responses.

▪ Programmer-directed explicit construction of customised monitoring applications.

▪ Cooperative monitoring, that is, passive monitors that are called by the application and/or the

execution framework to report various predefined conditions.

SmartCLIDE “Runtime Monitoring and Verification” component should be able to support:

▪ Capture and storage and/or forwarding, according to configurable filters, of monitoring data to

other components.

SmartCLIDE “Runtime Monitoring and Verification” component may be able to:

▪ Leverage the SmartCLIDE application service composition to automatically construct

monitoring applications to run in tandem with the composed applications and to detect in the

applications’ behaviour violations of the applications’ specifications.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 29

 Confidentiality: Public

2.2.2 Cost-analysis Tool

The functionality of the Cost-Analysis tool is that of a predictor of the real costs of the facilities where the

developer's application is deployed. They will be able to use the methods described in the tool to replicate

the cost study in different server options (AWS, AZURE, GC, etc.) and reach their own conclusions about

the various alternatives and their potential use in the CI / CD stages.

2.3 Smart Assistant

The main goal of SmartCLIDE is to increase development speed, reduce errors, and improve the accuracy

of the programming process. In general, most IDEs include several tools to cover most aspects of software

development like analysing, designing, implementing, testing, and deploying. However, IDEs could have

more automation and intelligence to help developers. These features can be obtained by using the Smart

Assistant component, which uses artificial intelligence functionalities through the Deep Learning Engine

(DLE) component for its purposes. In this section smart assistant, functionality will be discussed. The Smart

Assistant and DLE have been specified as distinct components in previous versions of SmartCLIDE

documents [1] [2]. However, the linkage of both components is high and can lead to remarkable overlap.

Many smart functionalities can be found in extension marketplaces [6], like Kite [7] extension for

completion during source code writing. However, SmartCLIDE needs more guarantees to maintain and

version smart extensions in its own models. This is why SmartCLIDE proposed that the responsibility for

the Smart Assistant's intelligent behaviours should reside with the DLE. In this way, the Smart Assistant

component is simplified as a simple gateway between the DLE's internal models and the clients that will

use those behaviours through the Restful API.

The intelligent behaviours that the Smart Assistant provides to assist and guide the user while development

in different phases of software development are:

 - One line code generation

 - Context monitoring specification to provide suggestions.

• Code repository suggestions

• Recommender system for the sizing of the deployment environment

 - Get suggestions for workflow autocompletion as Items recommender in a BPMN workflow

 - Get a set of suggestions for acceptance test based on Gherkin

2.3.1 Design Approach

The UML diagram in Figure 12 shows the five responsibilities of the Smart Assistant. The different

subcomponents of the Smart Assistant are intimately related to the IA models of the DLE component, which

is why some subcomponents are simple gateways to the IA models.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 30

 Confidentiality: Public

Figure 12: Smart Assistant Component Diagram as DLE interface

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 31

 Confidentiality: Public

The key functionalities of the subcomponents of the Smart Assistant are presented in Table 3 -

Table 7.

Table 3:Smart Assistant One Line Code Generation

Name One Line Code Generation

Functionality
One Line Code Generation API subcomponent is an API Restful

interface to the Code Generation Auto-complete Model

subcomponent of the DLE component and is defined in the DLE

section.

Relevant Use Cases (D1.3)
UC-0006

Functional Requirements
D85, D88, D89, D90, D105

Table 4: Smart Assistant Code Repository

Name Code Repository

Functionality
This wizard is responsible for generating suggestions to the user to

facilitate commits to the git repository. Receiving information from

the monitoring system and with the help of the DLE, it will

determine the best time to commit to the git repository.

Relevant Use Cases (D1.3)
UC-0006, UC-0015

Functional Requirements
D85, D88, D89, D90, D105

Table 5: Smart Assistant Environment Component

Name Environment

Functionality
Responsible for generating suggestions for the metrics of the

deployment environment

Relevant Use Cases (D1.3)
UC-0006, UC-0009

Functional Requirements
D85, D89, D90, D105

Table 6: Smart Assistant Acceptance Test Suggestions Subcomponent

Name Acceptance test Suggestions

Functionality
The acceptance test set suggestion system, based on collaborative

filtering techniques, is responsible for providing the user with a set

of tests defined in Gherkin format to be applied to the workflow

defined in the BPMN and help verify if the expectations are met

Relevant Use Cases (D1.3)
UC-0006, UC-0008

Functional Requirements
D85, D87, D88, D90

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 32

 Confidentiality: Public

Table 7: Smart Assistant BPMN Items Suggestions Subcomponent

Name BPMN Items suggestions

Functionality
The BPMN Items suggestion system consists of automatically

selecting the next node/item in the workflow being modelled during

service composition in BPMN format.

Relevant Use Cases (D1.3)
UC-0006, UC-0007, UC-0011, UC-0012

Functional Requirements
D84, D85, D86, D88, D90

2.3.2 Interface Specification

The communication interfaces provided and required by Smart Assistant and shown in Figure 12are detailed

in Table 8.

Table 8: Smart Assistant Interface Specification

N

o

Interface (/API) Description Type

Provided Required

1 One line Code

Generation API

The Code generation API is a subcomponent of the

DLE module. This subcomponent is responsible for

generating code based on the user search query. The

API requires the user's queries to be passed it.

• code_input: A sequence of chars or words

in text format.

• Method: this parameter can include the

"Default" or "GPT2" value which specifies

the DL algorithms in the backend for

generating code. If developers don't pass the

arguments into the function, this parameter

will have the "Default" value.

• Language: this parameter specifies the

target programming language.

• code_sugg_len: This parameter specifies the

length of code that will be generated, which

can accept a numeric value.

• code_sugg_lines: This parameter specifies

the lines of codes suggested by the code

generator, which can accept a numeric

value.

The API returns related code snippets based on user

usage history and quality parameters in the collected

dataset. The first version of this API is designed for

finding Java codes.

*

2 Code Repository

API File

changed

The Code Repository API component offers an API

endpoint in order to accept requests from the Context

Handling component to make suggestions to the user

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 33

 Confidentiality: Public

N

o

Interface (/API) Description Type

Provided Required

when determining the best time to commit to the git

repository.

It needs as input monitoring information each time a

change is saved to a file locally:

 - user. To be able to make custom suggestions

 - branch. In order to be able to make custom

suggestions

 - pending files. The number of modified files

pending upload to the code repository.

 - compilation errors. The number of compilation

errors. It is a recommended data to have in order not

to make suggestions of commits having compilation

errors.

This event will trigger a hint about the need to

commit to the code repository if applicable based on

the context data and the suggestion model.

3 Code

Repository API

Commit

The Code Repository API commit component offers

an API endpoint in order to accept requests from the

Context Handling component to determine the best

time to commit to the git repository.

It needs as input monitoring information each time a

commit is made to the code repository:

 - user. To be able to make custom suggestions

 - branch. In order to be able to make custom

suggestions

 - number of files. The number of files uploaded to

the code repository.

*

4 Environment

API Resource

used

The Environment API component offers API

endpoints to accept requests from the Context

Handling component to make suggestions to the user

about the sizing of the deployment environment.

It needs as input tracking information each time a

workflow execution is performed:

 - Unique identifier of the workflow that allows to

relate it to the tracking sizing information provided

through the Environment API Resource used.

 - maximum resources used, such:

 - Mb of ram

 - CPU Hz

 - Concurrent threads

 - Execution time duration

 - disk space

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 34

 Confidentiality: Public

N

o

Interface (/API) Description Type

Provided Required

5 Environment

API Start

Deploy

The Environment API component offers API

endpoints in order to accept requests from the

Context Handling component to make suggestions to

the user about sizing of the deployment environment

This API is the entry point of the recommendation

model. Context handling should use this API to get a

recommendation when the user wants it (typically

when all tests have passed successfully). It needs as

input tracking information each time a workflow

execution is performed:

 - Unique identifier of the workflow that allows to

relate it to the previous sizing information provided

through the Environment API Resource used.

This event will trigger a deployment environment

sizing hint.

*

6 Acceptance API

Gherkin

templates +

BPMN

The Acceptance API component provides API

endpoints for the purpose of accepting requests for

providing the user with a set of tests defined in

Gherkin format to be applied to the workflow defined

in the BPMN and help verify if the expectations are

met.

This is the entry point for improving the

recommender system. Here are the gherkin templates

that have been used as an acceptance test for a BPMN

workflow.

 - Finalised BPMN

 - Set of gherkins used as acceptance test of the

BPMN

*

7 Acceptance API

BPMN Context

The Acceptance API component provides API

endpoints for the purpose of accepting requests for

providing the user with a set of tests defined in

Gherkin format to be applied to the workflow defined

in the BPMN and help verify if the expectations are

met.

In this API, you receive the BPMN finalized when

the user wants to get recommended acceptance tests.

The input data is:

 - Finalised BPMN

The response is:

 - Set of gherkins is recommended as acceptance

tests for the BPMN.

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 35

 Confidentiality: Public

N

o

Interface (/API) Description Type

Provided Required

8 BPMN Items

API
The BPMN Items API suggestion system consists of

automatically selecting the next node/item in the

workflow being modelled during service

composition in BPMN format.

When the user wants a recommendation during the

editing of the BPMN, user should indicate:

 - BPMN in XML format in edit

 - selected node of the BPMN

And the output of the recommender system will be:

 - New item/task to be included in the XML of the

BPMN

*

9 One Line code

Generation to

DLE Model

The One Line code generation API use DLE

subcomponent Code Generation Auto-Complete

Model as recommendation engine

 *

1

0

Code repo to

DLE Model
The Environment API subcomponent use DLE

Deployment environment Suggestions Model

subcomponent as recommendation engine

 *

1

1

Environment

API to DLE

Model

The Environment API subcomponent use DLE

Deployment environment Suggestions Model

subcomponent as recommendation engine

 *

1

2

Acceptance API

to DLE Model
The Acceptance API subcomponent uses the DLE

Test Acceptance suggestions model subcomponent

as a recommendation engine.

 *

1

3

BPMN items

API to DLE

Model

The BPMN Items API subcomponent uses the DLE

BPMN Items Model subcomponent in order to get

recommendations results.

 *

2.3.2.1 Smart assistant functionalities

Smart assistant needs provide functionality which facilitates the development process. Most of this

functionality is the result of merging artificial intelligence with existing IDE functionality. this section

reviews the available smart assistant functionality:

One line code generation

In IDEs, code completion can suggest lists of API/function/Class/variable. Several studies are focused on

code-completion tools that can improve the list of API suggestions [8] [9] have presented a learning model

for API parameter suggestions in IDEs. Besides, [10] proposed the statistical learning models that learn

from code changes. They believe the code changes are accrued for one method; their dataset is based on

code changes snippets. Also, in some practical works [7] Language modelling has been utilized for

autocompletion tasks that have successful results. Accordingly, the DLE subcomponent has provided

automatic code generation based on the generative models. Smart assistant subcomponent is responsible

for provide interface of DLE autocomplete model. This interface needs to use context awareness of what

developers are writing and provide proper inputs for the DLE model.

Context monitoring

The context monitor is designed to solve two responsibilities of the Smart Assistant.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 36

 Confidentiality: Public

▪ Guidance through the process of pushing changes into a version control repository.

▪ Suggestions or guidance in the deployment stage on the sizing of the deployment environment

We have defined two operating scenarios that will allow the Smart Assistant, with the help of the DLE, to

make suggestions that will facilitate the SmartCLIDE user's work.

For the commit-based recommender system, a model based on a combination of statistical methods and

computational techniques has been employed. The fundamental idea of the method is that the conditional

probability density of random variables such as the number of changes between commits is approximated

using numerical methods. There is a number of changes made for a programmer with the characteristics of

such a random variable. Based on this information, the system calculates how common or infrequent that

situation is with respect to the approximate distribution, thus producing a suggestion.

The resource estimation system has been designed within the formal framework of fuzzy inference systems

(FIS). In this case, the aim is to capture the common relationships, understandable to human experts in this

field, in rules of a mathematical nature that consider the uncertainty intrinsic to the natural language. The

mathematical realization of these rules is done with functional forms commonly used in the domain of fuzzy

logic, thus allowing the operation of the system to be understandable to human experts, as well as allowing

fine tuning in the case that a dataset with metrics on the resource allocation problem becomes available in

the future.

Acceptance test based on Gherkin

The model for acceptance test recommendation is based on the construction of a history that relates the

BPNM diagrams available in the database to the existing acceptance test cases to which they have been

linked. the subcomponent of smart assistant needs to link user and AI based model in DLE.

This subcomponent is responsible for receiving two types of requests:

▪ Model feedback. BPMN file in XML format and a set of acceptance test templates in Gherkins

format that the user has decided to use for testing. This data will help the model explained in the

DLE section to progress by learning in order to be able to make better recommendations.

▪ Context BPMN file. This is the acceptance test set request. The BPMN file is used by the CBR

model (detailed in the DLE) as input. The response is the acceptance test suite in gherkin format.

In both types of requests, the subcomponent in the Smart Assistant is in charge of communicating the user

context with the IA model of the DLE subcomponent. It performs the validation and checking of the input

on the different fields, both in terms of format and required fields. And managing the result of the model to

make the most efficient recommendation to the user.

Items recommender in a BPMN workflow

Service composition needs efficiently exploring for services from service repositories. SmartCLIDE aims

to provide suggestions for the next node/item in the BPMN workflow. Accordingly, The AI-based model

has been proposed to make service suggestions while service composition. This smart assistant

subcomponent tries to provide a user interface for interacting with the DLE model.

The goal of the proposed model is to suggest a list of candidate Web services while developers are

composting services in BPMN workflows. The adopted solution is embedded in a DLE subcomponent

which provides the suggestions using API. The input of the model is a suggestion request which can be a

one-off signal from the SmartCLIDE monitoring system. SmartCLIDE has several monitoring modules

which are continuously working in the background. For example, while developers are building services

workflow, when a step in the workflow diagram drawing is completed, SmartCLIDE creates a signal to the

backend to receive service suggestions for the next step. The signal must contain the identification of the

last node so that suggestions are made based on it. The output signal, in JSON format, will contain the

recommended service to link to the node indicated in the request. The resulting list may have no

recommendations for all requests which depend on the DLE decision.

The actual BPMN context has a significant role in providing smart suggestions which provide required

information for proposed models. The service suggestions module in the BPMN has been exposed as a web

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 37

 Confidentiality: Public

API and will be implemented in Python. Both request and response are in Json format. The module has four

main steps which are: 1) Query Compositor 2) Current BPMN Extractor 3) BPMN semantic identifier 4)

Numerical vector transformer.

Figure 13: BPMN Suggestions Architecture

The different stages of the recommendation model are detailed below:

▪ BPMN Parser. This stage is responsible for extracting information from the incomplete XML

file that is received as input. The current study introduces semantic BPMN identifiers based on

network techniques to transform the incomplete BPMN into a text sequence.

▪ Numerical vector Transformer. This stage has been designed based on NLP techniques which

use word embedding text representation. The main idea is to transform the incomplete BPMN

into a numerical vector. The well-known Python libraries for implementing this submodule have

been utilized including Spacy and Gensim.

▪ Transformed space similarity search (TSSS). Based on similarity metrics defined in the

transformed vector space created in the previous stage, tools are designed to locate the most

suitable services for the BPMN design context in which the user is located. The last nodes

introduced determine a textual pattern to which corresponds a representation in the transformed

space that can be used for recommendation. This stage is at the heart of the success and failure

of the recommendations. The aim is to suggest services from the internal SmartCLIDE registry

during the composition of the workflow in BPMN, so as to avoid having to do a search to

complete each node individually.

▪ Output compositor. The output compositor is responsible for defining, validating service

suggestions. Based on different request, service suggestion can offer 3 types of JSON response:

o To improve the results obtained from the model by applying a system of penalties

on the recommendation rating to services already present in the BPMN diagram to

avoid making recommendations of nodes already present.

o Decide whether the results obtained from the model allow a recommendation

to be made. The transformed vector similarity model results in the ordered list

of services most similar to the context.

o Compose the recommendation in JSON format

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 38

 Confidentiality: Public

3 Deep Learning Engine

3.1 DLE Problem Specification

The rapid rate of technological and digital advancement requires the building of related software, which is

a time-consuming process. SmartCLIDE includes the advantages of Artificial Intelligence (AI) and Cloud

Computing. These technologies can help the developer overcome the complexities associated with multi-

platform software products. Concerning Intelligent software engineering, theoretical [11] [12] and

empirical [13] [14] works have shown that software intelligence has widely used in software development.

Accordingly, SmartCLIDE has proposed the DLE component, which is responsible for feeding smart

Assistants by intelligent models. DLE subcomponent responsibility can fall into the following categories:

▪ Context monitoring specification in order to provide suggestions

▪ AI code completion for generating one-line code using language modelling

▪ The acceptance test set suggestion for giving the user a set of tests defined in Gherkin format.

▪ Classification of Web services based on their meta-data in order to reduce service selection

search space

▪ Code repository suggestion is responsible for making suggestions for the user to facilitate

commits to the git repository.

▪ Service deployment environment recommendations in order to produce suggestions for the sizing

of the deployment environment.

▪ BPMN Items suggestions aim to help automation in selecting the next node/item in the BPMN

workflow

3.1.1 Design Approach

DLE subcomponents are responsible for supporting AI-based smart assistant features. Figure 14

demonstrates the DLE component diagram, including components, subcomponents, interfaces, ports, and

their relationships. The DLE component of SmartCLIDE aims to provide some intelligent features directly

in the service classification, code generation and predictive modelling wizard subcomponents. But in

addition, it also contains subcomponents responsible for AI models to service the Smart Assistant

responsibilities.

The key functionalities of the subcomponents of the DLE are presented in Table 9 - Table 16.

Table 9: Service Classification Model

Name Service Classification Model

Functionality
The Service classification subcomponent is responsible for

classifying new services. There are two important resources for new

services. First, the newly created services are created by

SmartCLIDE users using the service creation module. Second, the

new observation by service discovery module.

Relevant Use Cases (D1.3)
UC-0006, UC-0012, UC-0028

Functional Requirements
D85, D88, D89, D105

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 39

 Confidentiality: Public

Figure 14 DLE Component Diagram

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 40

 Confidentiality: Public

Table 10: Template based agent Code Generation

Name Template based agent Code Generation

Functionality
This subcomponent is responsible for generating code based on

internal templates. The API returns related code snippets based on

templates to implement the workflow represented in BPMN in low

code. The first version of this API is designed for finding Java

codes.

Relevant Use Cases (D1.3)
UC-0006

Functional Requirements
D103

Table 11: Code Generation Auto-complete Model

Name Code Generation Auto-complete Model

Functionality
This subcomponent is responsible for one line automatic code

generation based on DL learning model which is trained by external

and internal available source codes

Relevant Use Cases (D1.3)
UC-0006

Functional Requirements
D85, D88, D89, D105

Table 12: Code Repository Suggestions Model

Name Code Repository Suggestions Model

Functionality This wizard is in responsible for generating suggestions to the user

to facilitate commits to the git repository. Receiving information

from the monitoring system, and with the help of the DLE, it will

determine the best time to commit to the git repository.

Relevant Use Cases (D1.3) UC-0006, UC-0015

Functional Requirements
D85, D88, D89, D105

Table 13: Deployment environment suggestions Model

Name Deployment environment suggestions Model

Functionality This subcomponent is responsible for generate suggestions for the

sizing of the deployment environment

Relevant Use Cases (D1.3) UC-0006, UC-0009

Functional Requirements D85, D89, D90, D105

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 41

 Confidentiality: Public

Table 14: Acceptance test Suggestions Model

Name Acceptance test Suggestions Model

Functionality The acceptance test set suggestion system, based on collaborative

filtering techniques, is responsible for providing the user with a set

of tests defined in Gherkin format to be applied to the workflow

defined in the BPMN and help verify if the expectations are met

Relevant Use Cases (D1.3) UC-0006, UC-0009

Functional Requirements D85, D87, D88, D90

Table 15: BPMN Items suggestions

Name BPMN Items suggestions

Functionality The BPMN Items suggestion system consists of automatically

selecting the next node/item in the workflow being modelled during

service composition in BPMN format.

Relevant Use Cases (D1.3) UC-0006, UC-0009

Functional Requirements D85, D87, D88, D90

Table 16: Predictive Model tool API

Name Predictive Model tool API

Functionality This wizard, as a subcomponent of the DLE in SmartCLIDE, is

accessible through a RESTful API in several stages, structured in

an ideally linear flow that in practice allows iterative backtracking.

Its objective is to guide the user in the creation of a predictive

model.

Relevant Use Cases (D1.3) UC-0006 (P65 associated requirements)

Functional Requirements D70, D100, D101, D102

3.1.2 Interface Specification

No Interface (/API) Description Type

Provided Required

1 Service

Classification API

 The Service classification API is a

subcomponent of the DLE module. This

subcomponent is responsible for

classifying new services. There are two

important resources for new services. First,

the newly created services are created by

SmartCLIDE users using the service

creation module. Second, the new

observation by service discovery module.

Both services need to have required fields

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 42

 Confidentiality: Public

No Interface (/API) Description Type

Provided Required

that are defined in the service specification

schema. The following parameter is

mandatory to route the requests to this

implemented API:

• Service Name: A string including

web service name.

• Service Description: a service

description in string format.

• service_id: Service Id in numeric

format.

This API determines one pre-defined

category in an available dataset and returns

a JSON file containing the service class.

The API has the ability of batch services

classification.

2 Template Code

Generation API
The Code generation API is a interface to

the subcomponent Template Code

Generation of the DLE module. This

subcomponent is responsible for

generating code based on internal

templates. The API requires the BPMN in

XML format.

Current BPMN workflow: A xml format.

The API returns related code snippets

based on templates to implement in low

code the workflow represented in BPMN.

The first version of this API is designed for

finding Java codes.

*

3 Predictive Model

tool API

This wizard, as a subcomponent of the

DLE in SmartCLIDE, is accessible through

a RESTful API in several stages, structured

in an ideally linear flow that in practice

allows iterative backtracking. Its objective

is to guide the user in the creation of a

predictive model.

The stages of the wizard are:

1) Functionality related to dataset analysis.

It receives as input the dataset in csv

format, analyses it and returns in JSON

format the names of the columns,

suggested types and an example of target

so that the user can modify this

configuration if necessary, in later stages.

2) Optionally, simple graphical

representations of the attributes in the

dataset can be obtained, considering the

type (quantitative, qualitative, ordinal...)

assigned to them. This can be used for the

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 43

 Confidentiality: Public

No Interface (/API) Description Type

Provided Required

user to decide which attributes to consider

or ignore in the construction of the model.

3) Having as input the JSON-like

information with the chosen attributes,

their assigned data types, the target column

(in the case of supervised algorithms), the

algorithm and its configuration selected for

training and the configuration of the policy

to split between training and testing, the

model is adjusted and trained.

4) The metrics and data of the resulting

model can be checked with dedicated

endpoints. The status of the training

process can be monitored

5) The final model is exported, including

example code to allow it to be deployed as

a stand-alone service.

4 One Line code

Generation to

Smart Assistant

Provide a generated one-line code by DL

model for Smart Assistant
*

5 Code repo to DLE

Model

Provide a generated one-line code by DL

model for Smart Assistant

*

6 Environment API

to DLE Model

Provide service deployment environment

recommendations for Smart Assistant

*

7 Acceptance API to

DLE Model

Provide acceptance test recommendation

results for Smart Assistant

*

8 BPMN items API

to DLE Model

Provides suggestions for new items during

workflow editing in BPMN format.
*

3.1.3 Service Classification

Web services include a wide range of software, applications, or cloud technologies that use standardized

protocols to communicate and exchange data messaging. Therefore, service has different meanings based

on its applications. Since some service classification approaches tend to be more efficient in some service

applications, it is necessary to first define the terms before reviewing the technical architecture.

Online services are mostly a marketing expression that can fall into three main categories: 1) Infrastructure

as a Service (IaaS), 2) Platform as a service (PaaS), 3) SaaS Software as a Service (SaaS). IaaS offers

services such as virtual hosts, networking, and virtualization like Amazon Web Services (AWS) for systems

administrators. PaaS can offer tools or some Web services for developers, which are available on a cloud

structure. SaaS platforms make software available to even non-developer users on the Internet. Given these

categories, our work focuses on classifying web services or APIs (PAAS).

The service classification subcomponent of the DLE attempts to categorize discovered service data into a

predefined number of classes. First, the component discovers services from different resources and

repositories. Most of the web service repositories have a category field to identify their service functionality.

To this end, the component has used the category field as a dataset label. However, the main problem is

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 44

 Confidentiality: Public

that those categories have too much variety, which provides class diversity and decreases classification

performance. For this reason, the service classification component has used a hybrid AI model by

combining unsupervised and supervised learning techniques. In particular, clustering approaches are

employed to cluster service categories. Afterward, ML and DL learning models have been examined for

service classification on clustered service data. A Long Short Term Network (LSTM) was trained, with the

text processed using Fasttext [15], which is an extension of the word2vec [16] model for text representation.

Also, machine learning (ML) algorithms such as MultinomialNB classifier, GradientBoosting, and Support

Vector Classifier (SVC) use the TF-IDF vectorizer to process the text. This work evaluates the mentioned

algorithms based on accuracy, precision, recall, and f1 score metrics.

3.1.4 Code Generation

Automatic code generation is a solution that accelerates software development. The code generation sub-

component tries to provide code autocompletion which can offer a line of codes during programming.

Autocomplete IDE functionality through AI can be divided into two groups: 1) API/function/Class/variable

suggestions were improved by recommender systems 2) Autocomplete approaches applied language

modelling [17] [18]. The first category can improve the accuracy of suggestions and provide an efficient

list of API/function/variable suggestions. The second group is for the code completion approach in which

AI can be used, such as NLP techniques for language modelling. These suggestions can consider local

codes and external features in the current IDE tab.

The Code generation subcomponent needs to develop a promising approach. In practice, there are

successful efforts such as Tabninea [19] [20], Kite [21], which provide one-line code generation using

language models. Consequently, this subcomponent, which needs to develop a promising approach, has

proposed automatic code generation based on LSTM and pretrained GPT2 models for generating one line

code.

3.1.5 Datasets

Service classification and code generation needs a dataset for providing learning models. This section will

describe the dataset resources and processing data steps.

3.1.5.1 Dataset for Code Autocompletion

In traditional template-based code generation, the focus has mostly been on user input and available

designed code template. However, automatic code generator generation approaches that used AI models

need users' input and require training datasets. These datasets can have different representations of code

(e.g., code snippets, images, abstract syntax trees, etc.).

Pre-processing dataset depends on the level of code like function, class levels that the automatic code

generator will generate. SmartCLIDE code generation aims to assist developers while writing codes.

Therefore, the provided dataset includes lines of codes in text format. Although the local project codes or

codes in the running IDE tab can provide valuable code corpus for training a deep learning algorithm,

external public datasets can be utilized. GitHub Java corpus [22] is a collection of Java code on a large

scale divided into training and test datasets. The training dataset includes 10,968 java projects and

264,225,189 lines of codes. Also, the test dataset consists of 3,817 java projects and 88,087,507 lines of

codes. However, the model is under development, and selecting the right dataset is investigating, as well.

SmartCLIDE autocompletion aims to assist developers while programming with one-line code completion.

To this end, datasets include lines of codes in text format. Although, the local project codes or codes in the

running IDE tab can provide valuable code corpus, in order to train deep learning algorithm, external public

datasets have utilized, as well.

3.1.5.2 Dataset for Web Service

Several public service registries [23] [24] have collected web services. Current work uses a dataset that is

collected from Programmable web [23]. This public service dataset includes thousands of services from

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 45

 Confidentiality: Public

popular providers. ProgrammableWeb was established in 2005, and it has collected 24100 web APIs by

September 2021. The collected data includes detailed information such as description, category, versions,

and response formats. The category field of this public dataset is assumed as a service data label. However,

service categories have more than 500 different values. In general, class diversity is a challenging issue in

building successful classifiers. Therefore, DLE provides a pipeline for clustering datasets before

classification. Moreover, a significant part of web service API is Web/Internet, which is network APIs that

are uniquely addressable across the Internet.

3.1.5.3 Dataset for Acceptance Test

The model for acceptance test recommendation is based on the construction of a history that relates the

BPNM diagrams available in the database to the existing acceptance test cases to which they have been

linked. In order to design the AI model to achieve the desired recommendation system, two datasets have

been obtained:

• A total of 3479 .feature files in Gherkin format.

• A total of 2268 .bpmn files with the XML

The fact that the collected Gherkins datasets contain a large number of examples of a purely didactic nature

and in several languages means that one cannot expect any kind of modeling around them to result in a tool

that is applicable to real projects. To solve this problem, a Case-Based Reasoning (CBR) approach is

proposed that allows the incremental construction of a set of Gherkins associated with realistic projects,

with the prior consent of the users, who, by granting it, will be able to benefit from the recommendation

system. As a basis for the algorithm, it is proposed that, based on a correspondence of BPNMs and Gherkins

associated with them, for a new BPMN in the context of the IDE, the most similar BPMNs in the knowledge

base are searched (using notions of textual similarity as a criterion for this search) and then retrieving the

Gherkins associated with them, offering them to the user for possible incorporation.

In order to allow the system to be put into operation, the establishment of a pilot case is considered using

the dataset collected which, although due to the nature introduced above, it is not possible to generate a

model that can be extrapolated to real scenarios, it will allow the behaviour of the recommender system to

be validated qualitatively.

3.1.6 Data Processing

In AI-based models, the results are highly dependent on the data quality. Therefore, data processing can

impact the adequate performance of any algorithm. The majority of the collected data in SmartCLIDE,

especially in service classification and code generation, is text. Given that the majority of the data is text,

text pre-processing is required prior to clustering and classification. In fact, pre-processing text transforms

text from human language to machine-readable format. Text pre-processing includes some well-known

NLP techniques: tokenization, normalization, stop words removal, and lemmatization/stemming.

Tokenization splits a sequence of text into units with semantic meaning. Normalization includes

introductory text pre-processing, including removing punctuations, transforming to lower case, and

removing numbers from the document. Stop words removal is responsible for removing generic words of

the English language such as determiners, conjunctions, and other parts. Lemmatization or stemming is a

process that reduces each word to its root (e.g., using Porter’s stemming algorithm [25]).

SmartCLIDE text processing tries to cover levels of linguistic processing which includes syntax, semantics

and pragmatics analysist. Moreover, data pre-processing class diagrams aims to support both NL and

structured codes pre-processing. Figure 16 demonstrates data pre-processing class diagrams that support

both NL and structured codes pre-processing.

3.1.6.1 Data Preprocessing for source code dataset

Regarding source code preprocessing, NLP suffers from ignoring the concept of code structure. However,

recently researchers provide learnable probabilistic models of source code that consider code structure [26].

Hence, there is a strong need for a tool that helps develop quality software by automatically pre-processing

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 46

 Confidentiality: Public

source codes. SmartCLIDE preprocessing uses the Codeprep [27] tool. Table 17 demonstrates some

functions which Codeprep supports.

Table 17 Example of functions for preprocessing source code corpora

Function Name Desc

RemoveComments This function replaces comments with specified character

CamelCaseSpeliting Function names such as “sendEmail” will split based on Java

function naming

LineLevelSpliting This function splits lines of codes in a file

FunctionLevelSplitting One of important code mining task is, the Tokenization of code is

an important stage, the common method for tokenizing source code

during data mining can be tokenizing based functions.

SmartCLIDE preprocessing use Tree-sitter for function level

Tokenization

However, most of the mining approaches are based on well-commented, well-naming functions, variables,

and classes. Thus, these approaches may provide weak results in some real-world source codes.

3.1.6.2 Web Service Data Processing

The Service classification sub-component utilizes real-world web service API. Collected datasets suffer

from a famous classification problem, which is imbalanced classes. Therefore, we have conducted possible

solutions for learning from imbalanced data, including data-level and algorithm-level methods. Moreover,

the collected dataset has high-class diversity, which impacts classification accuracy. To address this issue,

our approach applied some filtering and HAC clustering to the service categories.

In order to cluster service data, two popular clustering algorithms have been investigated: 1) K-Means

clustering, 2) Agglomerative hierarchical clustering. K-Means clustering attempts to partition the dataset

into K predefined groups, which do not have overlap. However, agglomerative hierarchical clustering does

not need a predefined number of groups. Instead, it uses a recursive concept, which can be applied bottom-

up or top-down. Both the K-Means and hierarchical agglomerative clustering have been implemented.

Finally, hierarchical agglomerative clustering has shown better results; for this reason, it has been selected.

Afterward, two methods for dealing with imbalanced data have been utilized. First, the synthetic minority

oversampling technique (SMOTE) has been applied to the clustered dataset. SMOTE is an oversampling

technique selecting examples that are close in the feature space. The results demonstrate that using the

SMOTE technique provides some improvements; however, synonyms-based augmentation offers a

significant improvement. shows Each of the stages for data processing.

Table 18: Process Stage Details for Providing Training Dataset for Web Service Classification

Records Rows Reprocess Steps

Row Dataset ~24000 -

Clustered Dataset ~21000 Select categories with more than 10-

rows data

cluster data by hierarchical clustering

Augmented

Dataset

 ~30000 Augment categories less than 400

services

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 47

 Confidentiality: Public

3.2 Machine Learning and Deep Learning Algorithms

Nowadays, Artificial intelligence (AI) is a well-known research area that builds intelligent programs and

machines that can improve automation tasks. This section will discuss service classification and code

generation, which mainly includes AI-based text processing techniques.

3.2.1 Service classification

Over the past decades, several approaches have been adopted to determine the category of a web service

from several pre-defined categories [28] [29] [30] [31] [32] [33] [34] [35] [21]. The early approaches used

manual defining services and keyword-based service discovery. Afterwards, semantic-based approaches

[28] [29] were introduced to overcome keyword search limitations. In recent years, studies have mostly

focused on using AI-based techniques [30] [31] [32]. SmartCLIDE service classification needs to identify

challenges and solutions in both practical and theoretical aspects.

Two major evolutions have had a significant impact on the service classification research area. First, the

evolution of service implementation, which is transformed from traditional SOAP services to RESTful

services. Second, the evolution of in-text processing by switching from traditional bag of words (BOW)

feature engineering to utilizing word-embedding text representation and deep learning.

Although most earlier approaches have used information extraction for extracting service features from

WSDL [33] [34] [35] [21], these days, RESTful is the prevalent solution for providing web services/APIs.

In fact, RESTful service descriptions are merely in the free text, which is less machine-readable than

structured WSDL. Consequently, some automatic processes, such as automatic data collection, service

specification and discovery are facing some challenges.

Considering RESTful services evolution, service description has become a significant feature in service

classification. Accordingly, most of the text classification approaches have been applied in this research

area. The emergence of word-embedding techniques has improved keyword-based feature engineering.

Additionally, the increasing word embedding open-source projects such as Glove [36] or word2vec

[15](fixed embedding) helps the fast and efficient low-dimensional representation of web service data.

These features has led to better results in service classification [28] [30] [32]. Therefore, a series of recent

studies in text processing has indicated that the combination of feature engineering and learning model was

switched from traditional BOW/ML algorithms to word-embedding/deep learning. Consequently, the

service classification approaches have impacted the mentioned text processing evolution. The earlier

approaches mostly combined BOW and traditional ML. Up to now, LSTM and BiLSTM models have

shown proper accuracy in service classification [32] [28]. BiLSTM-based modeling offers better

predictions than regular LSTM-based models. However, BiLSTM models suffer from high computational

processes, which can be challenging in practice.

3.2.2 Code Generation

Automatic code generation has important applications in software development tools, the most famous of

which are integrated development environments (IDEs). These tools have features such as template

suggestion and automatic code completion, which can use automatic code generation techniques. Moreover,

merging artificial intelligence (AI) can bring new opportunities in most of the mentioned research areas.

AI offers the ability to predict [37] [38] [39] [40], recognize [41] [42], and generate [43] [44] on the basis

of existing data; this ability can be used for automatic code generation.

The literature has shown that automatic code generation methods can be categorized into 1) software

engineering [45], 2) combination of software engineering and AI [37] [46], and 3) sole AI approaches [21]

[41]. The selection of automatic code generation methods depends on factors like output scale (e.g., full

software code, function, one line of code) or automation level. The first category includes promising

techniques for both partial or full software source code generation, which can help non-developer users.

The major topics in the first category include model-driven, template-based code generation, and visual

programming. The second category has mostly improved code generation applications (e.g., code

completion) in tools (e.g., IDEs) that have recently been proven to behave more intelligently. Additionally,

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 48

 Confidentiality: Public

recommender systems are extensively used in this category. In the third category, most methods are driven

by text mining or image textual representation techniques. GUI2code AI approaches show promising results

for fully automated code generation from an image [31]. However, fully automated multi-lines code

generation through generative AI models still needs human supervision [47]. Recently, attention-based

neural networks have been investigated to solve this issue. Besides, some works used code search instead

of writing the program directly. Fully automated code generation through generative AI models is still an

unpromising approach since it cannot keep track of structural code dependencies [48]. Balog, Matej, et al.

in [43] have introduced the “DeepCoder” model, which can write code after searching a large code database.

It resorts to inductive programming and search techniques to generate codes in its domain-specific language

(DSL). However, their approach is limited to writing programs in just five lines of code. Regarding this

limitation, some works used AI models to search existing code instead of directly writing limited code by

deep learning. The hierarchy of automatic code generation categories is illustrated in Figure 36.

Figure 15 Automatic Code Generation Related Approaches Classification in SE and AI

Literature have shown merging artificial intelligence with existing IDE functionality can bring new

opportunities in most involved area in software development tool (see Table 19). In general, the most

promising approaches have improved current functionalities such as code autocomplete, code search in

IDEs. These functionalities have been improved extensively by AI algorithms, especially through

recommendation system models. To this end, SmartCLIDE aim to provide semantic code auto-completion

powered by AI which suggest more relative code snippets for users while programming.

Table 19: Literature Review

Category Research area Application Ref

Combination

of

Recommendation

model+ Code search

Code Suggestion

NL-to-code search

Code-to-code search

[35] [47]

[44] [49]

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 49

 Confidentiality: Public

Category Research area Application Ref

Software

Engineering

and

AI

Approaches

Recommendation model

+ Code completion

API parameter suggestion in IDEs

API method recommendation
[50] [51]

Recommendation model

+ Template based code

generation

Template Suggestion
[52]

AI

Approaches

Language Modeling

• Sequence

Generative

Model(e.g.RNN)

Code Completion

Automatically write code

API Method Recommendation

[53] [41]

Machine Vision Model

• CNN Neural

network

GUI2Code

Visual programming

Automatically Handwrite to code

[38] [42]

Dimension Reduction

• NN embedding

feature

Contextual Embedding of Source Code

Source Code Representation
[54] [54]

Machine Translation:

• language

modelling

(e.g.RNN)

Natural language to code

Generate code summarize

Translate one language to another

Abstract Syntax Tree

[55] [42]

3.3 Implementation

SmartCLIDE aims to provide some intelligent features for developers using AI-Based techniques. Figure

16 shows the class diagrams of service classification and code generation pipeline.

Figure 16 The scheme of Classes and used packages in DLE component

3.3.1 Service Classification

A hybrid unsupervised and supervised model was proposed for service classification. This model has

trained based on real-world web services. The recent studies [30] [31] have shown that Programableweb

[23] is the most popular resource for training the service classification models. This public service registry

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 50

 Confidentiality: Public

includes thousands of services from popular providers like Google APIs [23]. To this end, the model has

been trained based on this public dataset, facilitating a comparison of the results.

The proposed model includes the following steps: 1) Providing dataset,2) Pre-processing data by NLP

techniques, 3)Text representation by Distilbert transformer 4) Clustering dataset, 5) Dealing with

imbalanced using data augmentation, 6) Text representation by BOW/Fast text 7) Classification using

ML/DL algorithms 8)Save trained models.

Figure 17 Hybrid supervised/unsupervised approach to classify web services

In this work, service classification takes advantage of text classification trends and deep learning methods.

After processing the collected dataset, techniques and algorithms have been applied to solve the service

classification problem. A long short-term network (LSTM) was trained by the processed text using Fasttext

[16], which is an extension of the word2vec [15]. Additionally, Machine Learning (ML) algorithms such

as MultinomialNB classifier, GradientBoosting, and Support Vector Classifier (SVC) use the TF-IDF

vectorizer to process the text. This work evaluates the mentioned algorithms based on accuracy, precision,

recall, and f1 score metrics. Regarding individual classifiers, results show that weighted SVM has better

accuracy and performance. The model is deployed as a REST API, in which a sample request and response

is shown in Figure 18.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 51

 Confidentiality: Public

Figure 18 HTTP request and response example for service classification sub-component API

3.3.2 Code Generation

Generative models and language modeling present a powerful role in some IDE features; for example, [21]

[41] have shown promising results in practice by using language models. SmartCLIDE tries to use a

language modeling pipeline to generate one-line codes based on existing internal and external source codes.

Language modeling is an active area in NLP, which uses different neural network architectures and

Transformers [56]. In this technique, the language model is built first, and then the sample is generated with

the help of learned models.

In this regard, a large amount of research has been conducted on the use of generative models for generating

texts, voices, and images. In other words, a sequence generator can get large text files as an input and can

train a model to predict the next character in a sequence. For example, The set of textbooks by an author

(e.g.shakespeare) can be used as a data-set. Then, generative models can produce a text similar to the

author's writing style.Since recurrent neural networks RNNs (e.g., LSTMs) such as LSTM have hidden

states which remember sequence information, they can be useful in language modeling. These hidden states

allow LSTM to generate text by character or word to the original training data. However, lack of

dependency and parallel computation lead to researchers use transformers. Recently state-of-the-art text

generation uses popular auto-regressive models like Generative Pre-trained Transformer (GPT) models,

GPT-2 [57] and GPT3 [58] by OpenAI.

The proposed model is trained to generate code suggestions while developers are writing codes. Also,

latency while suggesting codes is an issue in this component. Consequently, the proposed pipeline has used

DistilGPT2 [59], which is two times faster than GPT2. In terms of training data. The best scenario is to

learn from the internal SmartCLIDE codes project. However, deep learning algorithms train well with large

data. Therefore, the proposed model needs to use external source codes. The collected source code has been

filtered based on quality parameters such as forks and stars in GitHub.

DL algorithms can learn better by massive data, which includes repetitive patterns. Therefore, source codes

that have a variety of programmed tasks can decrease the performance [25].

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 52

 Confidentiality: Public

3.3.3 Acceptance test based on Gherkin

One of SmartAssistant’s purposes is to invite the user to test the resulting code in a test environment. For

this purpose, the SmartAssistant will provide a set of acceptance tests in Gherkin [60] specifications.

Acceptance tests are those designed to determine whether the requirements of the defined functionalities

have been met for the end-user without having to worry about the details of the implementation. They are

usually performed in the final phases of the test stage to verify compliance with the requirements. Gherkin

is a logical language with a BDD approach that allows defining behaviours in a way that customers can

understand. In this way, Gherkin does not specify how to test software units or classes but defines the

behaviour of the software in order to fulfil the proposed scenarios.

SmartCLIDE has defined the model to ask the user to define behaviors in Gherkin format. This definition

assumes as an initial phase to define the workflow programmed in BPMN format. Such a workflow in

BPMN format defines the information flows through the different tasks of the diagram it represents.

The model for acceptance test recommendation is based on the construction of a history that relates the

BPNM diagrams available in the database to the existing acceptance test cases to which they have been

linked. This interrelation is done through their history itself, combined with textual similarity techniques

and semantic content extraction mechanisms in the case of BPNMs.

Figure 19 Acceptance Test Suggestion Model

The different stages of the model are:

▪ BPMN Context. (Input). The BPMN file in XML format that you are working with in the

SmartCLIDE workspace is the starting point of this process. This process should start when the

BPMN is completed to avoid making suggestions on how to test an incomplete BPMN.

▪ BPMN Parser. It extracts the relevant information from the XML format of the different tasks.

▪ Normalizer. Transforms the information extracted from the BPMN and normalises it so that it

can be used as input to the AI model.

▪ BPMN + Gherkins Repository. This repository stores the history of Gherkins files associated

with the BPMNs in which they have been used as acceptance tests.

▪ Gherkin templates used with BPMN. (Input). This point allows the repository to be continuously

fed with the gherkins files that have finally been used as acceptance test of a certain BPMN and

that can be used later to improve the recommender system.

▪ Gherkins suggestions Model. Based on the repository of historical BPMNs + Gherkins, the AI

model will obtain as a result a list of Gherkin templates that have been used in previous BPMNs.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 53

 Confidentiality: Public

▪ Gherkin templates set. This is the result of the process. This list of gherkins will be offered to the

user so that he/she can decide whether to use it as an acceptance test of the flow defined in the

BPMN he/she is working with. And here it is necessary to collect the user's feedback so that the

Ghekins that are used as acceptance test can be returned as input to the process of acceptance

test suggestions in Gherkin format.

As previously indicated, a Case-Based Reasoning approach will be used. This approach is composed of

four stages:

▪ Retrieve: Given a target problem, retrieve from memory the relevant cases to solve it. A case

consists of a problem, its solution and, usually, annotations on how the solution was obtained. In

our problem, a case consists of a BPMN (XML file) and the acceptance test used for it in Gherkin

notation. A Gherkin is retrieved from the database using the KNN algorithm. Given each training

algorithm (x, f(x)) and xq as query instances that need to be classified. Also, if assume x1,...,xk

stands for k nearest neighbours of xq, if discrete-valued target function:

Where δ(a,b) =1 if a=b and where δ(a,b) =0 otherwise and also take mean of f values of k nearest

neighbours, if the target function is real-valued.

▪ Reuse: Adapting the solution of the previous case to the target problem. This may involve

adapting the solution as necessary to fit the new situation. The user will receive a Gherkin and

will be able to modify it for use.

▪ Revise: Once the previous solution (retrieved Gherkin) has been adapted to the target situation

(input BPMN), test the new solution (modified Gherkin) and, if necessary, revise it.

▪ Retain: Once the solution has been successfully adapted to the target problem, save the resulting

case as a new case in the database. The input BPMN and the acceptance tees that have been used

(Gherkin) are stored.

Figure 20 CBR cycle to obtain the acceptance test for an input BPMN

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 54

 Confidentiality: Public

3.3.4 Items Recommender in a BPMN Workflow

This AI-based approach provides recommendations during service composition. The suggestions are based

on a selected service composition approach by (BPMN-based work-flow) data representation,

existing/history BPMN work-flows, and provided service specification information.

During the composition of the user's workflow in SmartCLIDE represented in BPMN format, the user can

receive suggestions for new items to be included next. The adopted solution is executed as back-end

component in SmartCLIDE. It receives as input a recommendation request. This request can be a one-off

signal from the SmartCLIDE monitoring system when a step in the workflow diagram drawing is

completed. The signal must contain the identification of the last node so that suggestions are made based

on it. The output signal, in JSON format, will contain the recommended service to link to the node indicated

in the request.

3.3.5 Tools and Infrastructure

The following frameworks have been used for the implementation of the service classification and code

generation component of the DLE:

Scikit-learn/TensorFlow/Keras: Scikit-learn [61] has a rich history in the official Python general machine

learning framework. Also, TensorFlow [62] is a well-known library for deep learning, which Google

introduced. . TensorFlow is an open-source library that has both high-level and low-level APIs. Also, Keras

[63] provides high-level APIs based on TensorFlow. This can help developers to achieve their goals by less

programming.

NLTK/spaCy: The Natural Language Toolkit called NLTK [64] is a library for working with Natural

languages in Python. spaCy [65] is another natural language processing library. One of the main differences

between NLTK and spaCy is that spaCy uses an object-oriented approach.

 Pre-trained word embedding is an example of transfer learning, which helps to use public embeddings.

Therefore, it can aid in leverage training quality and also decrease time. Some of the popular pre-trained

models are listed below:

▪ Word2Vec [16]: (by Google): This model is provided by Google which is trained on Google

News data.

▪ GloVe [36]: (by Stanford): This model is provided by Standford, which is called Global Vectors

(GloVe). This model includes various models from 25, 50, 100, 200, to 300 dimensions based

on 2, 6, 42, 840 billion tokens.

Pre-training transformers for language understanding:

▪ DistilBERT [66]: DistilBERT is a fast and light Transformer model trained by distilling

BERT[65] (Bidirectional Encoder Representations from Transformers). Bert is a transformer that

Google has introduced. The significant feature of BERT is using BiLSTM, which is the most

promising model for learning long-term dependencies.

▪ DistilGPT2 [59]: DistilGPT2is a Transformer that is two times faster than GPT2.

▪ Tree-sitter [67] : The tokenization of code is a critical stage that can be based on functions

(method, API). Tree-sitter is a library for tokenizing source codes that can parse most

programming languages.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 55

 Confidentiality: Public

3.4 Context Handling

Context Handling UML Component diagram is presented in Figure 21. The Context Monitoring and

Context Extraction subcomponents are documented in Table 20 and Table 21, respectively.

Figure 21: Context Handling Component

Table 20: Context Monitoring Subcomponent

Name Context Monitoring

Functionality
See Section 3.4.1.1

Relevant Use Cases (D1.3)
This module has no direct reference to D1.3. It provides background

functionality to support the DLE.

Functional Requirements
See Section 3.4.1.2

Table 21: Context Extraction Subcomponent

Name Context Extraction

Functionality
See Section 3.4.2.1

Relevant Use Cases (D1.3)
This module has no direct reference to D1.3. It provides background

functionality to support the DLE.

Functional Requirements
See Section 3.4.2.2

3.4.1 Context Monitoring Specification

The objective of the Context Monitor service is to receive raw data and provide aggregated context data. It

is a generic solution for monitoring data sources, which is customizable for different communication

protocols and data structures. It enables data pre-processing or data aggregation.

3.4.1.1 Design Approach

The main objective of the Context Monitoring component is to receive raw sensor data and provide

aggregated context data. To this end, it allows monitoring of legacy systems in enterprises and products via

different interfaces from the Data Access Layer. Therefore, it is able to standardize and correlate data from

distinct systems (e.g., map actions from file systems and web services), which later serve as a basis for

identification and extraction of context. The main component of the Context Monitoring is the modular

monitoring process, used for all monitoring features with an extendable and configurable standardized

process (see Figure 22).

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 56

 Confidentiality: Public

Figure 22: Recurrent monitoring process

The process consists of three parts:

▪ Monitoring system/sensor/behaviours service, which contains all features to monitor legacy

systems and devices in enterprises via the Data Access Layer. The distributed monitoring

services also call back to this module with their gathered information. The monitoring features

can be extended and configured for different systems and do not need to comply with other

modules.

▪ Parser module, which contains content parser for the different possible data captured by the

monitoring module. The parser offers access to the diverse data possible interacted and therefore

monitored with. It provides access to the analyser and may parse available environment

properties.

▪ Analyzer / Monitoring Data Builder module, which correlates the monitored content (and

maybe environment properties) and constructs the standardized monitoring data to be stored and

handed over to the Context Monitoring / Determination service or any other service that needs

this information.

For each data source to be monitored an index can be specified, which will hold the environment properties

of the resources monitored. Depending on the actual resources to be parsed and analyzed (e.g., XML data

from web services), several resource specific plugins can used by the generic Context Monitoring

framework. Each of these plugins allows inclusion of parsers and analyzers, which are specified for

additional external and legacy systems.

3.4.1.2 Technical Specification

The following section describes the specific technical specifications of the Context Monitoring component.

3.4.1.2.1 Context Monitoring Service

The main classes of the Context Monitoring Service are (Figure 24):

▪ IAmIMonitoringService: The interface defining the System Monitor web service and its public

classes. The type of the web service (i.e., SOAP) is defined via Java annotations.

▪ AmIMonitoringService: The main class of the System Monitor. Each configured Monitor is

started in a separate thread to allow parallel continuous monitoring of configured data sources.

Monitored information is stored in the monitoring data repository, which is made accessible via

this service for each monitor.

▪ IAmIMonitoringDataRepositoryService: The interface defining the monitoring repository

service. A reference to this service is hold in the System Monitor to allow access to the concrete

implementation of the monitoring repository.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 57

 Confidentiality: Public

▪ MonitoringConfiguration: It holds the configuration of the system monitor during runtime.

This configuration object reads the XML configuration file that configures the system monitor.

Figure 23: Example of Monitoring Configuration

▪ ThreadedMonitor: The ThreadedMonitor object is responsible for starting and stopping all

configured monitoring plugins (Monitors). During runtime, it holds a list of all defined monitors

and manages their states.

Figure 24: Class diagram of the Context Monitoring Service

3.4.1.2.2 Monitoring Repository Service

The main classes of the Service are:

▪ IAmIMonitoringDataRepositoryService: Interface defining the monitoring repository service.

The type of the web service (i.e., SOAP) is defined via Java annotations.

▪ AmIMonitoringDataRepositoryService: The main class of the Monitoring Repository service.

Each configured Monitor is started in a separate thread to allow parallel continuous monitoring

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 58

 Confidentiality: Public

of configured data sources. Monitored information are stored in the monitoring data repository

that is made accessible via this service for each monitor.

▪ PersistenceUnitService: An abstract class, where functionalities related to persistence are

implemented.

▪ MonitoringDataRepository: This class implements all required functionalities to persist and

load data to and from the monitoring repository.The data is stored in an SDB6 repository.

Figure 25: Class diagram of the Monitoring Repository Service

3.4.1.2.3 Monitors

The System Monitor has several generic monitors that were implemented in the current prototype. Each of

the monitors is implemented as a software service. These monitors are:

▪ a Monitoring Service for the SmartCLIDE message broker

▪ a Monitoring Service for SOAP-based web services,

▪ a Monitoring Service for legacy file systems and

▪ a Monitoring Service for relational databases

These monitors were implemented in the Early Prototype:

▪ ThreadedMonitor: The ThreadedMonitor object is responsible for starting and stopping all

configured monitoring plugins (Monitors). During runtime, it holds a list of all defined monitors

and manages their states.

▪ FileSystemMonitor: This generic monitor checks files in a specific folder of a filesystem for

changes. For example, a source code files in a file system.

6 SDB Triple Store - https://jena.apache.org/documentation/sdb/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 59

 Confidentiality: Public

▪ DatabaseMonitor: This generic monitor allows to observe a database for changes in its schema.

This monitor was not used in a validation scenario, but for some unit test cases during the

development.

▪ MessageBrokerMonitor: This generic monitor checks for events coming from a message

broker. For example, a monitor of the RMV sends information about new monitored information

via a message broker to the Context Handling.

▪ WebServiceMonitor: This generic monitor retrieves data from a system that makes observable

data available via a web service. This monitor was not used in a validation scenario, but for some

unit test cases during the development.

Figure 26: Class diagram of the System Monitors

3.4.1.2.4 Parser

The main class for all parsers is the IndexingParser. The following briefly describes the implemented

parsers:

▪ IndexingParser: This is an abstract monitoring parser. The corresponding analyzer for each

parser is created during initialization. The IndexingParser holds a reference to the corresponding

analyzer, which is executed after successful parsing of data.

▪ FileParser: Abstract parser that parses data from flat files. This class contains the generic

functionality of the parser for files located in a file system. The parsing process itself has to be

implemented by each concrete implementation.

▪ DatabaseParser: Abstract parser that parses data from a database. This class contains the

generic functionality of the parser for data sets located in a database that can be accessed via

jdbc. The parsing process itself has to be implemented by each concrete implementation.

▪ MessageBrokerParser: Abstract parser that parses data received from a message broker. This

class contains the generic functionality of the parser for data sets received via a message broker.

In the current implementation the message broker is based JRabbitMQ (see Section MoM). The

parsing process itself has to be implemented by each concrete implementation.

▪ WebServiceParser: Abstract parser that parses data from a web service. This class contains the

generic functionality of the parser for data set accessible via SOAP based web services. The

parsing process itself has to be implemented by each concrete implementation.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 60

 Confidentiality: Public

Figure 27: Class Diagram of the Parsers

3.4.1.2.5 Analyzer

The main class for all analysers is the IndexingAnalyser. The following briefly describes the implemented

analysers:

▪ IndexingAnalyser: This is an abstract monitoring analyser.

▪ FileAnalyser: Abstract analyser that processes files from a file system. This class contains the

generic functionality for analysing data files located in a file system. The analysing process itself

has to be implemented by each concrete implementation.

▪ DatabaseAnalyser: Abstract analyser that processes data from a database. This class contains

the generic functionality for analysing data sets located in a database that can be accessed via

jdbc. The analysing process itself has to be implemented by each concrete implementation.

▪ MessageBrokerAnalyser: Abstract analyser that processes data from a database. This class

contains the generic functionality for analysing data received from a message broker. The

analysing process itself has to be implemented by each concrete implementation.

▪ WebServiceAnalyser: Abstract analyser that processes data from a web service. This class

contains the generic functionality for analysing data sets that can be accessed via SOAP based

web services. The analysing process itself has to be implemented by each concrete

implementation.

Figure 28: Class Diagram of the Analysers

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 61

 Confidentiality: Public

3.4.1.2.6 Monitoring Data Models

The main class for all monitoring data models is the MonitoringDataModel. The following briefly describes

the monitoring data models:

▪ IMonitoringDataModel: Interface defining the data model for monitored data. The monitoring

data model will be created by the analyzer and persisted into the monitoring repository.

▪ IMonitoringData: Interface defining which methods have to be implemented for a concrete

implementation of monitoring data.

Figure 29: Class Diagram – Monitoring Data Model

3.4.1.3 Interface Specification

Table 22: Context Monitoring Interface

No Interface (/API) Description Type

Provided Required

1 MonitoringRequest/

list_available_monito

rs

Interface provided by RMV to obtain a list of

all available monitors

 *

2 MonitoringRequest/

register_for_notificat

ion

Interface provided by RMV to subscribe to

the monitored values for a given monitor and

sensor

 *

3 ContextMonitor/

listen_to_notification

Notification invoked by MoM about new

data available for Context Monitoring

*

4 ContextMonitoring/

notifyExtraction

Notifies the Context Extraction about new

data available in the monitoring repository to

be processed by Context Extraction

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 62

 Confidentiality: Public

3.4.2 Context Extraction Specification

The objective of the Context Extractor service is to identify the context of development processes or

specified systems and to provide it for further use within the SmartCLIDE solution to other modules or

external systems.

3.4.2.1 Design Approach

This section provides the specification of the parts of which the Context Extraction component consists.

The service uses a context model for an integrated representation of the observed environment (e.g.,

products, systems, machines, processes, or users).

The Context Extraction component consists of the following services:

▪ Context identification: It determines the current context of products, machines and production

processes using monitored raw data from the Context Monitoring component and historic context

information stored in a context repository, based on the context model.

▪ Context reasoning: It uses reasoning rules on the context provided by the context identification

part, and determines more accurate context, which cannot be directly identified during the

process in the context identification part. Fully elaborated specification of the context reasoning

will be provided in D3.2.

▪ Context provision: It provides detected context to the other services.

As shown in the figure above, the Context Extraction component identifies context based on monitoring

data, provided by the monitoring module, enhances it through different types of reasoning techniques (i.e.,

context reasoning), and provides the refined context for further exploitation to modules (or external

systems).

The Context Extraction module is based on the services developed within the projects Self-Learning7 and

SAFIRE8. The module will be extended to address the specific needs of the SmartCLIDE solution, as well

as the particularities of the three business cases. The collection of input data will be conducted by the

monitoring module, and the Context Extraction part will analyse structured and unstructured data in order

to specify the current context and identify the parameters of the product/machine or process environment

could affect its performance. The identification of the respective context is carried out based on the context

models, which define each time what information is relevant to the observed context. The identified context

information is being stored in the context repository as annotation to the content that is used in the observed

context.

3.4.2.2 Technical Specification

The following section describes the specific technical specifications of the Context Extraction component.

3.4.2.2.1 Context Extraction Service

The main classes of the Context Extraction are:

▪ IContextExtractionService: The interface defining the Context Extractor service and its public

classes. The type of the web service (i.e., SOAP) is defined via Java annotations.

▪ ContextExtractionService: The main class of the Context Extraction component.

▪ IMonitoringDataModel: A reference to the monitoring data model, which contains the current

monitoring data to be used for Context Extraction.

7 https://cordis.europa.eu/project/id/228857
8 https://www.safire-factories.org/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 63

 Confidentiality: Public

Figure 30: Class diagram of the Context Extraction Service

3.4.2.2.2 Context Repository Service

The main classes of the Context Repository Service are:

▪ IContextRepositoryService: An interface defining the context repository service. The type of

the web service (i.e., SOAP) is defined via Java annotations.

▪ ContextRepositoryService: The main class of the context repository service. The identified

context are stored in the context repository. Via the configuration of the Context Extraction

service, the usage of a reasoner can be configured. Reasoning functionality is included in this

object, because it is responsible to query the context repository. In the full prototype

implementation, the Pellet9 reasoner will be used.

9 https://github.com/stardog-union/pellet

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 64

 Confidentiality: Public

Figure 31: Class diagram of the Context Repository Service

3.4.2.2.3 Context Identifiers

The main classes of the Context Identifiers are:

▪ IContextIdentifier: The interface defining a context identifier. A context identifier is a wrapper

used to identify the context based on monitored data and the context model. In each concrete

implementation of a context identifier the usage of a reasoner can be defined.

▪ ContextContainer: This class is a wrapper object that holds an identified context during

runtime.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 65

 Confidentiality: Public

Figure 32: Class Diagram – Context Identifiers

3.4.2.3 Interface Specification

Table 23: Context Extraction Subcomponent Interface

No Interface (/API) Description Type

Provided Required

1 ContextMonitoring/

listen_to_notification
Notification invoked by Context Monitoring

about new data available for Context

Extraction

 *

2 ContextExtraction/

notifyDLE

Notifies the DLE about new identified

context. The Context Monitoring send a

notification including the identified context

to the MoM.

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 66

 Confidentiality: Public

4 Backend Services

This section presents the early design approach of the core backend components. All technology providers

have described their individual design approaches from the technological perspective. A complimentary

description of the research-oriented approaches is described in “D2.1 SmartCLIDE Innovative Approaches

and Features on Services Discovery, Creation, Composition and Deployment”. The following artifacts have

been specified for each component:

▪ Component diagram using UML 2.5 Class diagram notation

▪ Specification table for each subcomponent including a brief description of its functionality and

links to the functional requirements (from D1.2) and corresponding use case (from D1.3)

▪ Interface Specification table describing provided and required interfaces as illustrated on the

component diagram.

The overall SmartCLIDE component diagram is presented in Figure 33. The diagram in Figure 33 includes

only high-level components. Detailed component diagrams, including subcomponents and their

relationships, are presented and discussed in in Subsection 4.1 - 4.9.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 67

 Confidentiality: Public

Figure 33: Component - based SmartCLIDE architecture update

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 68

 Confidentiality: Public

4.1 Source code repository

4.1.1 Technology Choice

At the time of writing this document, the predominant version control system used for both open-source

and proprietary software is Git10. Git is a distributed version control system where the complete version

history of a codebase resides on every copy, or clone, of a git repository. The convenience of this approach

is that a developer may make changes to a local copy of the codebase, create new branches, commit changes,

and alter the local commit history without being connected to a central repository. Once satisfied with the

local changes, the developer can synchronise them with a remote repository using the “push” mechanism,

while changes made by other developers can be obtained from a remote repository using git’s “pull”

mechanism. The remote repository is usually hosted on a central git server, shared by a team who co-

ordinate their development effort by pushing and pulling project updates to and from the central server.

A consequence of the dominance of Git in the market is that the majority of development tools have

excellent support for it as a version control system, either built-in or available as a plugin. Regarding the

tools selected to be reused by SmartCLIDE, Elcipse Theia includes built-in git support, while workflows

defined in jBPM11 are stored internally in git and can be synchronised to an external git repository.

While Git on its own provides excellent support for version control, there are several services that provide

additional functionality on top, including GitHub12, GitLab13 and Atlassian Bitbucket14. Some common

additional features are:

▪ A web-based user interface to support git repository configuration as well as other value-added

services

▪ Support for code review

▪ Support for CI/CD pipelines

For SmartCLIDE, the consortium has chosen to use GitLab since it is available as a pre-packaged Docker

image that can be deployed either on-premises or in the cloud and has a number of other features that make

it useful for integration in the SmartCLIDE environment, such as:

▪ Integration with external security providers for access management, and Keycloak15 in particular,

which is the chosen User Access Management platform

▪ RESTful and GraphQL APIs that can be used by other components of SmartCLIDE

▪ Native support for CI/CD

▪ Hierarchical organisation of Git repositories using “Groups” and “Subgroups”, as shown in

Figure 34.

10 https://git-scm.com/
11 https://www.jbpm.org/
12 https://github.com/
13 https://about.gitlab.com/
14 https://bitbucket.org/
15 https://www.keycloak.org/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 69

 Confidentiality: Public

Figure 34: Hierarchical Group Structure in GitLab

As a proposed structure, the top-level SmartCLIDE group contains sub-groups named “Services” and

“Workflows”, each of which contain GitLab projects that contain a Git Repository plus other data for

handling additional features such as merge requests and CI/CD.

4.1.2 Items to be Stored in Source Code Repository

There are a number of source-code artifacts required to implement a workflow in the SmartCLIDE

environment, which should all be version-controlled:

▪ Workflow definitions and metadata: Each workflow definition has its own repository on the

GitLab server. Depending on the use case for the environment, the workflow repositories may

be grouped according to different criteria. For instance, all workflow repositories may belong to

a single group if the SmartCLIDE environment is used for just one project, or they may be further

divided into subgroups to allow more refined access control by multiple project teams. Data

stored in version control for the workflow includes:

o Metadata regarding the workflow (e.g., name, description, and service dependencies)

o Gherkin description of the workflow

o BPMN model of the workflow. Note that the selected workflow engine, jBPM, contains

its own embedded git server. There are two options proposed for the SmartCLIDE IDE:

▪ Synchronize the workflow definition between the jBPM embedded git instance

and GitLab

▪ Use only the embedded Git instance in the jBPM server

▪ Service Source Code: In cases where a service is written from scratch, assembled using a

template, or otherwise modified from existing source code, the service should have its own Git

repository on the GitLab server. It is proposed to build a library of service definitions, grouped

separately from the workflow definitions, since each service has the potential to be re-used in

different workflows.

4.1.3 Branching Strategies

The flexibility of Git as a version control system, the ease with which branches can be created and merged,

and its use in many different contexts has led to the existence of many branching and release strategies.

Suitability of a strategy depends on many factors, including the size of a team, the complexity of the

software, whether multiple releases need to be maintained concurrently, etc.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 70

 Confidentiality: Public

While there is nothing to prevent a team choosing from any of the strategies, in the context of SmartCLIDE

the simplest strategy for the circumstances is probably the best. This could be simply using the master (or

main) branch directly or, if code review practices are to be used, using short-lived feature branches branched

off master and the Merge Request feature of GitLab.

4.1.4 GitLab APIs

Aside from direct access to a git repository via the usual git HTTP(S) or SSH protocol, GitLab also provides

APIs that can be used to obtain and update information on the GitLab server. The most useful for the

SmartCLIDE are:

▪ REST API [68]

▪ GraphQL API [69]

At the time of writing this document, the RESTful API has more complete functionality and documentation

than the GraphQL, although the aim of the GitLab developers is to move over to GraphQL for the additional

benefits of being able to specify exactly what is required in response to a request and being able to request

multiple data items in a single request.

Some examples of tasks that can be performed over the RESTful API are:

▪ List the projects that the user has access to, in a specific project group/namespace

▪ Create a new project in a given group/namespace

These API endpoints are particularly useful for listing and creation of workflows and services by various

components of SmartCLIDE, so that it is not necessary for a user to log in to the GitLab UI to be able to

use the value-added features of GitLab. An example of creating a new project from the REST API is shown

in Figure 35.

curl --request POST \

 --url http://gitlab.localhost.private:20080/api/v4/projects \

 --header 'Authorization: Bearer E2Mr_rz3WCsDE_WabYBz' \

 --header 'Content-Type: application/json' \

 --data '{

 "name": "new-workflow-example2",

 "namespace_id": 5

}'

{

 "id": 4,

 "description": null,

 "name": "created-with-api",

 "name_with_namespace": "SmartCLIDE / workflows / created-with-api",

 "path": "created-with-api",

 "path_with_namespace": "smartclide/workflows/created-with-api",

 "created_at": "2021-07-12T15:02:13.929Z",

 "default_branch": null,

 "tag_list": [],

…

Figure 35: Example request to GitLab REST API to create a new Project

The token used in the authorization header has been added manually to the user’s profile via the GitLab UI.

The response output is truncated for brevity.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 71

 Confidentiality: Public

4.2 Discovery of Services and Resources

The Discovery of Services and Resources backend module is responsible for collecting data on services

discovered through the use of crawlers, maintaining an internal registry of services, as well as serving

queries/requests for services based on service usage details and service code requests. This component

communicates with the DLE to classify services and receive updates.

4.2.1 Design Approach

The Service Discovery component will have five sub-components that will implement the described logic,

depicted in light yellow in the Figure 36.

The workflow for a search for services request would be:

1. An internal service registry/database (implemented using the Elasticsearch [70], technology)

containing classified services will be in place.

2. Query search input: A service description, along with its tags and category (optional).

3. If category is not in user input, we need to classify user input based in the description using the

DLE Service Classification API.

4. The search is established through the Internal Service Index Manager sub-component, first it will

search in the service registry, if it does not find any candidate to return, the crawler sub-component

will perform a search of the online repositories for the user input and store new repositories if any

in the service registry.

5. All services in a category if any, will be ranked based on downloads, followers, stars and other

additional information.

6. Those services if any with all available fields in the service registry (URL, name, follower, code…)

will be a returned to the user.

Table 24: Discovery of Services & Resources Crawlers

Name Crawlers

Functionality Collect information from web service listings, service code

repositories, service registries and provide data ready to be stored

in the registry.

Relevant Use Cases (D1.3)
 UC-0002, UC-0004, UC-0028,

Functional Requirements
 D1, D2, D3,D4,D5,D6,D7

Table 25: Discovery of Services & Resources Internal Services Index

Name Internal Services Index Manager

Functionality Allows to store, search and classify both discovered and new

created services. This component communicates with the DLE

classifier and uses the Elasticsearch API to perform searches, along

with its internal SQL service registry.

Relevant Use Cases (D1.3)
 UC-0002, UC-0004, UC-0028

Functional Requirements
 D3, D4, D6

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 72

 Confidentiality: Public

Figure 36: Discovery of Services and Resources Component Diagram

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 73

 Confidentiality: Public

Table 26: Discovery of Services & Resources - Repository of discovered services

Name Repository of discovered services

Functionality Store the records discovered by the crawler tool in .csv files while

executing the retrieval requests, serving as a backup of the

discovered services until they are uploaded to the internal database.

Relevant Use Cases (D1.3)
 UC-0002, UC-0004, UC-0028

Functional Requirements
 D1, D2, D3, D4

Table 27: Discovery of Services & Resources New Services Creation

Name New service Creation

Functionality Allows new services, created from the Service, Composition and

Testing component to be stored and classified in the service registry

index.

Relevant Use Cases (D1.3)
 UC-0002, UC-0004, UC-0028

Functional Requirements
 D3, D4, D5

Table 28: Discovery of Services & Resources Search Services

Name Search Services

Functionality Using an internal SQL record and the Elasticsearch API, this

component will accept search requests that it will delegate to the

internal registry and then to Elasticsearch, returning the ranked

services to the user based on the search.

Relevant Use Cases (D1.3)
 UC-0002, UC-0004, UC-0005, UC-0011, UC-0012, UC-0028

Functional Requirements
 D4, D5, D6, D7

4.2.2 Interface Specification

Table 29: Discovery of Services and Resources Interface Specification

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 74

 Confidentiality: Public

N

o

Interface

(/API)

Description Type

Provi

ded

Requi

red

1 Crawlers

API
The Crawlers API, which is a subcomponent of Discovery of

Services and Resources, provides a system of search requests

with two parameters, where one at a time is mandatory.

• from_url:a plain-text URL of a github//gitlab/bitbucket

organization or user.

• from_keywords: one or a series of keywords separated

by comma related to what topics of services to search for

Returns the number of repositories found added to the index and

the delay in search.

*

2 Search

API

 Although this functionality has been delegated to the

Elasticsearch API [71] as it has been decided to use a high-level

solution, the component will expose a custom API to cater for

different types of searches.

By making use of an internal SQL registry and the Elasticsearch

API this component will accept search requests which it will

delegate to the internal registry and then to Elasticsearch,

returning to the user the ranked services.

• service_to_search: a JSON file containing the

minimum data to search: keyword (optional), name and

description. The more parameters the better the search

will be. See Fig X, for more parameters.

Returns a JSON containing the services ranked according to

search criteria.

*

3 Service

Definition

API

Used for storing new services created from the Service,

composition and testing component. Accepts a parameter:

• service_to_add:a JSON file containing the service

minimum required fields as described in Figure X

Returns a JSON containing the response message from the

request to insert that service into the index.

*

4 Service

Classificati

on API

This component is used to classify the discovered services, the

API is called with the following parameters:

• Service Name

• Service Description

• Tags

Gets the returned JSON file containing service class to be stored

in the service registry.

 *

5 Service

Registry

API

This component uses the Elasticsearch stack, its API will be

exposed [71] to communicate the internal service index manager

subcomponent with the service registry

 *

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 75

 Confidentiality: Public

4.2.3 Crawlers

The main objective of the crawlers is to create an internal database of services and resources for the Service

Discovery component. It supervises collecting the information generated from the crawlers that generate

lists of services from web service listings, service code repositories and service registries, either using

scraping in the first case or through an API in the rest.

The creation of the data frames will be detailed below based on the information that can be obtained from

each method. The main workflow is shown in Figure 37.

Figure 37: Pipeline of the data extraction process

A user provides a set of tokens as an input, the crawler logic sets up a Dataframe for the search, the search

in performed iteratively, for each keyword a CSV file is exported to have a copy of the process. When all

the keywords have been collected, the data is merged and exported under the same file. This file is stored

in the internal SQL registry then it will be automatically synchronised with the Elastic registry.

It also provides service extraction and several file collection components to meet the needs of the code

generation and recommender component, and for other sources, such as web Programmableweb. On a

recurring basis, the content of the websites will be crawled to gather new information which will be updated

in the Service Register. In this way, the entire content of the websites is periodically downloaded and

processed.

4.2.4 Internal Services Index

To manage the internal index, several requirements must be considered given the type of response expected

to cover the following needs:

1. Fast reacting: a system that allows fast text search, insertions, deletions, and updates is needed to

improve the user experience.

2. Stable and scalable: a system that is consistent, where backups are frequent, as well as a system

that allows the insertion of new data in an efficient way is needed.

3. Simple but effective: it is required that the system allows quick search, allowing for a multitude

of filters to refine searches while maintaining a simple complexity.

For the internal registration of the services, it has been decided to use Elascticsearch [1] as a search server

hosting a dataset of services with an intermediate register detailed in Figure 38 the fields marked as required

will be the minimum required information about a service to be classified.

Elascticsearch is an open-source distributed search engine and serves as an analysis database, it was

developed in Apache Lucene using Java. It allows to store, search, and analyse a large volume of data in a

matter of seconds and to get fast search answers through search indexes.

In contrast to SQL, a relational model, Elascticsearch is based on a search engine system, making it easier

to ingest new data by scaling horizontally. It therefore fulfils the need of rapid reaction and scalability,

resulting easily optimise it on various servers.

The most important point is that it serves as a REST API for data updates, builds and searches. Allowing

highly customized searches [40], for example, if we search for a term, it searches all fields until it finds

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 76

 Confidentiality: Public

exactly that term. Additionally, we can do fuzzy searches -similar-, prefixes, ranges of values, regular

expressions, data type, wildcard searches with * and match searches - match certain terms and not all-

among others. Through the Service Discovery Component this Elascticsearch index will receive Service

queries as well as new Services to be saved and respond with services that meet the query. With its API, it

meets the need to be simple but effective.

The required attribute in the service specification schema (Figure 63) is essential to perform searches. It

should be noted that this component is perfectly extensible and easy to add new attributes to the services.

However, it does not support ACID properties (Elasticsearch search engine model constraint). New data

will be attached with a version number, it will increase monotonically, but when two write calls come, both

will write concurrently and keep only the latest version.

An internal SQL registry will be maintained to serve as a database for the Crawler sub-component, this

database will be synchronised with Elasticsearch to provide the types of searches described above.

Therefore, the internal registry will have two databases, one to support the crawler (SQL) and one for

searches (Elasticsearch).

Its function is mainly to be an intermediary between searches and data insertions into the Elasticsearch

registry, when a new service is created its data will be collected by the New Service Creation sub-

component then passed to this module, the data is sorted using the DLE and then uploaded to the registry.

On the other hand, it also accepts insertions, when the crawler performs service searches the output data

will be passed to this submodule which will again use the DLE to classify the new services and insert them

into Elasticsearch. The duplicate control is done in the internal SQL record, when a component is newly

discovered and already exists in the SQL record no further action will be taken, if it is new, it will execute

the flow as described.

It also accepts search parameters from the Search Services component, implements the search logic

described in the Design Approach.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 77

 Confidentiality: Public

Figure 38: Required Attributes

4.2.5 New service creation

This subcomponent is limited to collect and check the new services created by the tool. The information

about the service will be passed on to the Internal Index Services Manager to be classified and stored in the

register.

4.2.6 Search services

This sub-component is limited to collecting search information from the Service, composition and testing

component, creates the query requests to be passed to the Internal Services Index Manager submodule to

execute the search in Elasticsearch or to search for new services if there are no records for it, the search

logic is delegated to that component

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 78

 Confidentiality: Public

4.3 Service Creation, Composition and Testing

4.3.1 Design Approach

The Service Creation subcomponent will be responsible for handling the creation of a new service. The

component will create the required infrastructure for the development process by automatically creating

and configuring functions such as version control and continuous integration. The above will be achieved

by leveraging the already existing GitLab API. Apart from aiding with the creation process, the component

will accompany the user through it by providing useful functionalities through interaction with other

components and external tools. The user will have the ability to request functionalities by notifying Deep

Learning Engine or Software Security. Furthermore, the user will be able to fetch analysis data from the

Reusability Index and TD Principal and Interest subcomponents. Finally, an API will be exposed, that will

allow the usage of certain functionalities when called by either the Eclipse Theia extension, JBPM

Workbench or any other type of UI. The overall purpose of the component is to aid during the development

process and ultimately lead to a better implemented final result.

The functionality provided by the Service Creation backend service, is accessible via a REST API. The

service, as of now, offers an endpoint that accepts request containing the appropriate parameters. For testing

and presentation purposes, POSTMAN was used to make requests, but also to evaluate their response.

Figure 39: Service Creation end point

The endpoint (/createStructure) requires four parameters:

▪ projectName: The name for the new GitLab project.

▪ projVisibility: The new project’s visibility (0:public, 1:internal, 2:private).

▪ projDescription: A description for the new project.

▪ gitLabServerURL: The url of the hosted GitLab instance.

▪ gitlabToken: The access token of the user that will own the project.

The service receives a request and checks it’s parameters for null, empty and invalid values. Assuming

everything is in order, a new GitLab project is created and the appropriate response is returned, containing

a status of 0 and a new project url. In case there is any sort of error, the response contains a status of 1 and

a message explaining the error.

The TD Principal and Interest subcomponent is responsible for calculating the main aspects of the TD

concept and it consists of two separate subcomponents. These subcomponents are responsible for the

assessment of the two main pillars of TD, namely “Principal” and “Interest”.

TD Interest Component

The results of the TD Interest Component are provided via REST API, through multiple endpoints. In this

section, we will demonstrate three API requests by providing each time the appropriate query parameters

and we will present the exact form of the request’s response.

Cumulative Interest

A screenshot of the POSTMAN request is shown in the following Figure. The client basically asks for the

project’s total TD Interest value (in monetary & time units) in each revision.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 79

 Confidentiality: Public

Figure 40: The Cumulative Interest Service Request

As it can be observed, the client must provide only one mandatory query parameters: the repository’s URL

Figure 41: Cumulative Interest Service Response

Once the request is sent, the service delivers a JSON file, whose form is shown in the above Figure. The

API response consists of a JSON array, within of which there are JSON objects, with 4 attributes: (a) the

commit id (SHA), (b) the incrementing revision number (revisionCount), (c) the value of the project’s total

interest in euros and (d) the value of the project’s total interest in terms of time (hours). Interest values are

calculated with the reported methodology.

Interest Change

A screenshot of the POSTMAN request is shown in the Figure below. The client asks for the change in a

project’s total interest compared to the previous revision.

Figure 42: Interest Change Request

In this case, the client must provide two mandatory query parameters: (a) the repository’s URL and (b) the

commit id (SHA).

Figure 43: Interest Change Response

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 80

 Confidentiality: Public

The API response consists of a JSON array, within of which there are multiple JSON objects, with 5

attributes: (a) the commit id (SHA), (b) the incrementing revision number (revisionCount),(c) the change

of project’s total interest in terms of money (euros), (d) the change of project’s total interest in terms of

time (hours) and (e) the change percentage of project’s total interest (compared to the previous revision).

Files with High Interest

Using this endpoint, the client asks for the files with the highest TD interest value, in a specific revision.

Figure 44: Files and High Interest Request

As it can be observed, the client must provide two mandatory query parameters and one optional: (a) the

repository’s URL and (b) the commit id (SHA) and (c) the maximum number (limit) of returned results

(optional).

Figure 45: Files and High Interest Response

Once the request is sent, the service responds with a JSON file that includes JSON array. The arreay consists

of multiple JSON objects, with 6 attributes: (a) the commit id (SHA), (b) the incrementing revision number

(revisionCount),(c) the file’s path, (d) the value of the project’s total interest in euros and (e) the value of

the project’s total interest in terms of time (hours) and (f) the file’s interest as a proportion of the project’s

total interest (percentage).

The TD Principal subcomponent is going to be in charge of the assessment of the time or money needed

to bring an individual component or even the whole system, to an optimum structural quality state.

Moreover, this component has the intention to provide the developer with ways in which the system can

become better in the aforementioned respect. To achieve these goals an external tool named SonarQube is

going to be used which quantifies the TD Principal through the number of code inefficiencies according to

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 81

 Confidentiality: Public

a set of rules. The connection of this tool with our component is going to be established through

SonarQube’s API.

The TD Interest subcomponent is responsible for measuring the interest both of the system as a whole and

its software components individually. TD Interest component is able to measure interest both in time unit

(minutes, hours etc.) and as a monetary unit (euros or dollars). This component has the intention to provide

the developer a clear perspective of the evolutionary and current system’s code quality state. Along with

the measurements of interest mentioned, the component will produce a set of basic software quality metrics,

in order to comprehend the system’s size, complexity, cohesion and coupling. This set of metrics will also

be used as input by the Reusability Index subcomponent.

Reusability Index Component

The results of the Reusability Index Component are provided via REST API. In this section, we will

demonstrate two API requests by providing each time the appropriate query parameters and we will present

the exact form of request’s response.

Reusability Index by Commit

The client makes a request for the project’s reusability index value in a specific revision.

Figure 46: Reusability Index by Commit Request

As it can be observed, the client must provide 2 mandatory query parameters: (a) the repository’s URL and

(b) the commit id (SHA).

Figure 47: Reusability Index by Commit Response

The API response consists of a JSON array, within of which there is a JSON object, with 3 attributes: (a)

the commit id (SHA), (b) the incrementing revision number (revisionCount) and (c) the value of the

Reusability Index, calculated with the reported methodology.

Reusability Index per Commit

Using this endpoint, the client asks for the project’s reusability index value in each revision.

Figure 48: Reusability Index by Commit Request

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 82

 Confidentiality: Public

As it can be observed, the client must provide one mandatory query parameter and one optional: (a) the

repository’s URL (mandatory) and (b) the maximum number (limit) of returned results (optional).

Figure 49: Reusability Index per Commit Response

The API response consists of a JSON array, within of which there are multiple JSON objects, with 3

attributes: (a) the commit id (SHA), (b) the incrementing revision number (revisionCount) and (c) the value

of the Reusability Index, calculated with the reported methodology.

Both the TD Principal and Interest subcomponents will be accessible through RESTful web services, to

facilitate the process of integrating and invoking the aforementioned components both from the inside and

outside of SmartCLIDE’s ecosystem.

The analysis results of both components will be presented to the developer in an individual panel inside the

Eclipse Theia instance, along with the computed results of the Reusability Index component, which is

closely related to the TD Interest subcomponent, as we already mentioned.

Figure 50: Service Creation, Composition and Testing Component Diagram

Table 30: Service Creation, Composition & Testing Subcomponent

Name Service Creation

Functionality
The Service Creation subcomponent is responsible for creating the

required infrastructure for the creation of a new service and aiding

the user in it’s implementation

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 83

 Confidentiality: Public

Relevant Use Cases (D1.3)
 UC-0001, UC-0003, UC-0014

Functional Requirements
 D9

Table 31: TD Principal and Interest Subcomponent

Name TD Principal and Interest

Functionality
The TD Interest subcomponent is responsible for measuring the

interest of a system. TD Interest is able to measure interest both in

time unit (minutes, hours etc.) and as a monetary unit (euros or

dollars).

Relevant Use Cases (D1.3)
 UC-0001

Functional Requirements
 D22, D24

Table 32: Reusability Index Subcomponent

Name
Reusability Index

Functionality
Reusability Index component is responsible for calculating and

providing the reusability index, which describes the degree to which

a software component can be reused in different systems.

Relevant Use Cases (D1.3)
 UC-0001

Functional Requirements
 D24

4.3.2 Interface Specification

Table 33: Service Creation, Composition and Testing Subcomponent

No Interface (/API) Description Type

Provided Required

1 Service Creation

(SC) API

The Service Creation component offers

API endpoints, in order to accept requests

for creating the structure for the

development of a new service. Each

request should contain:

• projectName: a name for the

new repository.

• gitLabServerURL: a URL

defining the location of the

GitLab server, that is going to

host the repository.

• gitlabToken: the access token of

the User that is going to own the

repository.

• Additional configuration

options for the GitLab repository

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 84

 Confidentiality: Public

No Interface (/API) Description Type

Provided Required

 Service Creation returns a JSON string

containing the exit code of the request,

along with an appropriate error message

(in case of failure) or a GitLab project

URL (in case of success).

2 TD Principal and

Interest (TD) API

The TD Interest API is a software

component that provides a web service,

whose functionality is invoked via API

and is responsible for providing the

interest both of the system as a whole and

its software components individually in

time & monetary units. Each request

should contain:

• repository: a URL referring to

project’s repository (e.g.,

GitHub, GitLab, Bitbucket, etc.)

• gitLabServerURL: a URL

defining the location of the

GitLab server, that is going to

host the repository.

• gitlabToken: the access token of

the User that owns the repository

The TD Interest API returns a JSON file

containing the measurements of interest

mentioned above, along with a set of

basic software quality metrics, such as

size, complexity, cohesion and coupling.

The level of the aforementioned metrics’

granularity will stop at file level.

The TD Principal API will provide a web

service which will be exposed via API

calls.Each request will have the following

mandatory parameters:

• sonarqube: the information of

the SonarQube instance where

the project is analyzed.

• repository: a URL referring to

project’s repository.

The TD Principal API will return a

JSON file containing the measurements

of Principal.

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 85

 Confidentiality: Public

No Interface (/API) Description Type

Provided Required

3 Reusability Index

(RI) API

The Reusability API is a software

component that provides a web service,

whose functionality is invoked via API

and is responsible for calculating and

providing the reusability index, which

describes the degree to which a software

component can be reused in other

systems. Each request should contain:

• repository: a URL referring to

project’s repository (e.g.,

GitHub, GitLab, Bitbucket, etc.)

• gitLabServerURL: a URL

defining the location of the

GitLab server, that is going to

host the repository.

• gitlabToken: the access token of

the User tha owns the repository

The Reusability API returns a JSON file

containing the measurements of the

reusability index. The level of the

aforementioned index granularity will

stop at file level.

*

4 GitLab API GitLab is used as the source repository for

newly developed services. Other than

storing the code of a service, it also

provides version control and continuous

integration capabilities. It provides an

API, through which its functionalities are

accessible. We use GitLab’s API to

create, configure and update the source

code repositories.

 *

5 New Code API New Code is an external software

component that provides a web service,

whose functionality is invoked via API.

New Code provides historical data about

the project’s source code additions and

modifications, whose presence is

mandatory in order the TD Interest

subcomponent to be able to calculate and

export its results. Each request has two

mandatory parameters:

• repository: a URL referring to

project’s repository (e.g.,

GitHub, GitLab, Bitbucket, etc.)

• commitId:a string value

indicating the distinct SHA value

of a project’s commit, in which

file changes occurred and must be

taken into consideration within

the analysis

 *

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 86

 Confidentiality: Public

No Interface (/API) Description Type

Provided Required

The New Code API returns a JSON file

containing all the meta-data (name of

file(s) modified, start line of

modification(s), etc.) of file changes that

occurred in the commit, whose ID

(commitId) was passed as a parameter to

the request.

6 SonarQube API SonarQube is an external tool that

analyzes a source code and its able to

return it’s results through a web API. The

results of the API are in a JSON format

and for the request we will need:

• For the end point

api/issues/search is required the

component key along with the

parameter type=CODE_SMELL,

in order to retrieve the issues that

the developer needs to resolve.

For the end point

api/measures/component we will need the

component along with the metric name, in

order to get metrics or even the TD

Principal of a file or the whole system.

 *

7 QSA API Interface provided by Software Security

to request a security assessment by

providing either a GitLab URL or a

project’s files.

 *

8 VP API Interface provided by Software Security

to request a vulnerability assessment by

providing either a GitLab URL or a

project’s files.

 *

9 Code Generation

API

Interface provided by Deep Learning

Engine to request code suggestions.

 *

10 Consume API Service Creation, Composition and

Testing component will use Consume

API to send asynchronous messages to

Service Discovery, Security, DLE, and

Smart Assistant components.

 *

11 Publish API Service Creation, Composition and

Testing component will use the Publish

API to receive messages from Service

Discovery, Security, DLE, and Smart

Assistant components.

 *

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 87

 Confidentiality: Public

4.4 Run-time Monitoring & Verification

4.4.1 Support for services developed with SmartCLIDE

When services are created in SmartCLIDE the RMV may be employed to generate a runtime monitor for

the service. Runtime monitors supplement, at run time, other quality assurance measures such as testing

and verification that are employed at development time. Particularly in SmartCLIDE, when automated

methods used to generate, or assist in the generation of, code for applications with minimal human

intervention, it is possible for there to be semantic “misunderstandings” between component services

composed to create the new service, or unexpected interactions of features of the components, resulting in

unexpected and undesirable behaviours. Runtime verification may be able to quickly intercept misbehaving

services and take a predetermined defensive or remedial action.

The monitors created for a service may be reviewed by the user and disabled or additional monitors

specified and generated to be run with the service. In addition, custom monitoring services may be created

as SmartCLIDE generated services, to serve other user applications or SmartCLIDE components.

4.4.2 Support to other SmartCLIDE components

Runtime monitoring and Verification (RMV) has explicit support for security and context-sensitivity

SmartCLIDE component in addition to synthesized monitoring for created services and the creation of

bespoke monitoring services.

4.4.2.1 Support for Security

In support of SmartCLIDE’s Security component the RMV system provides security auditing services. The

Audit module can generate its own audit logs consisting of audit records generated at the request of any

component in the system that possesses a valid audit token. The audit service can add audit records to a file

created by the audit service, or it can be directed to an interface to an existing audit or logging service

provided by the underlying platform. Auditing is configured through the Audit API, which also provides

APIs to generate audit records.

4.4.2.2 Support for Context Handling

For context-sensitivity the RMV system provides context reporting services comprising of the abilities to:

▪ Collect events from any service that incorporates an RMV monitor

▪ Create bespoke monitoring applications to monitor and report on conditions of interest to the

context system

The Context Handling component interacts with RMV through the Monitoring Request and Configuration

API and may also interact to create bespoke monitoring applications through the Monitor Creation API.

4.4.3 Design Approach

4.4.3.1 Overview

The architecture of the Runtime Monitoring & Verification (RMV) system is shown in Figure 2. The RMV

will incorporate and build upon several existing technologies as well as implementing new features and

integrating them in a novel way to support the runtime quality assurance goal of SmartCLIDE.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 88

 Confidentiality: Public

Figure 51: Run-time Monitoring and Verification Component Diagram

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 89

 Confidentiality: Public

RMV works hand-in-hand with SmartCLIDE Service Creation and is dependent upon the information used

by Service Creation to compose the functionality needed for a specified purpose. RMV creates a monitor

to run alongside and share certain variables 𝓥 with the created service. These variables provide the

“observables” O ⊆ 𝓥 needed for the function of the monitors. While running the monitors report their

output to the Monitoring Framework (MF) as a monitor event at each “step” of the monitored service. The

MF is initialized with Event-Response Packages (ERP) that associate a sequence of actions with an event

pattern. The set of potential actions is customizable and may include both internal actions and actions

outside of RMV. The most common actions are to log and/or notify other components of the event match.

A flexible and configurable Audit Agent (AA) receives notice of security-relevant events from RMV and

other SmartCLIDE components. The set of such auditable events is customizable. The AA is configurable

to select a subset of the auditable events, the current audit selection, to process through the Logging Agent

(LA) to create a persistent record of the event, and/or through the Notification Agent (NA) to send

notification of the event to other SmartCLIDE components.

4.4.3.2 Technology

Among the incorporated extant technologies are:

▪ the overall architectural framework of command processor, server structure, RESTful APIs, and

testing from an implementation of the Next Generation Access Control standard [72] by The

Open Group [73].

▪ the Event Processing Point (EPP) from TOG-NGAC an adaptation and extension of the EPP will

form the core of the Monitoring Framework component

▪ the runtime verification extension [74] to the symbolic model checker [75] will form the core of

the Monitor Creation component

▪ a recent audit API addition to TOG-NGAC will be adapted for the Audit Agent.

The RMV will include newly developed components for SmartCLIDE including:

▪ Create SMV model K for the service to be monitored from service specifications used by

SmartCLIDE service creation

▪ Create property specifications in Linear Temporal Logic (LTL) from service specifications

▪ Logging Agent for flexible and configurable logging

▪ Notification Agent to provide flexible and configurable notification to SmartCLIDE components

▪ Monitor Library to hold various facts and rules needed by other components and modules of

RMV

The top-level module of the Runtime Monitoring and Verification component is RMV. The names of the

subcomponent modules and their constituents are formed from “RMV” plus a suffix for the sub- or sub

sub-module. We provide a brief description of the function of each of the main subcomponents in the

following tables and a more detailed decomposition, corresponding to Figure 51, of the modules and

submodules in Section 4.4.3.

 Table 34: RMV subcomponent Monitor Creation (RMV-MC)

Name Monitor Creation

Functionality
Monitor creation utilizes service specifications of the service to be monitored to build

a behavioral model and a set of essential properties. These artifacts are built from

service specification information obtained from the Service Registry and from Service

Creation, and become input to NuRV, an implementation of an advanced monitor

synthesis algorithm that operates within a framework for Assumption-Based Runtime

Verification (ABRV) with Partial Observability and Resets [76]. NuRV is an extension

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 90

 Confidentiality: Public

of the model checker nuXmv [74] [75] 16. This technique allows monitoring even in

situations in which not all of the desired variables may be observable. It uses the model

of the system being monitored as an assumption on its behavior that enables reasoning

about the non-observables. The model serves as an assumption of how the service will

behave; it can be detailed, providing a presumably accurate prediction, or it can be

coarse and still provide benefit; it can even be empty, except for a declaration of the

variables in terms of which the properties are specified. In addition to strictly

monitoring for the specified properties, the monitor will provide a distinct output if the

observed behavior deviates from the model.

Service specifications used by SmartCLIDE Service Creation to create services for the

user are also passed to Monitor Creation as coordinated by an interaction between

Service Creation and Monitor Creation. For the created service the Monitor Creation

creates a monitor to run as part of the service and sharing a chosen set of “Observable”

variables with the service. The monitor is a combination of individual monitors for

properties of interest. To create a monitor, first the service specifications are used to

construct a behavioral model K of the service and the shared variables 𝓥, in SMV

notation, to be used as an assumption by the monitor. The properties that the monitor

is to verify are constructed as LTL formulae 𝜑1, 𝜑2, ..., 𝜑n (𝓥). The resulting K

and 𝜑1, 𝜑2, ..., 𝜑n are submitted to NuRV/nuXmv for the synthesis of the monitors 𝔐i.

Internally, RMV-MC uses NuRV (with nuXmv) for monitor synthesis. MC provides

the resulting monitors to Service Creation and Deployment to be run with their

associated service.

Relevant Use

Cases (D1.3)
 UC-0025

Functional

Requirements
Using patterns and tactics stored in the Monitor Library (RMV-ML), the Create Model

and Create Properties modules use SmartCLIDE service specifications to prepare input

to NuRV and provides the resulting monitors to SmartCLIDE Service Deployment.

RMV-MC exposes a Monitor Creation API (MCAPI) outside of the RMV subsystem.

This API is a subset of the MC control functions used by RMV-MF to control and

coordinate the operation of MC. The internal API includes:

• load_service_spec(service_spec)

• service_spec2smv(service_spec_id, SMV_model)

• service_spec2ltl(service_spec_id, LTL_properties)

• service_spec2nurv(service_spec_id, NuRVcmds)

• create_monitor(model, properties)

• graph_monitor(model, properties)

• export_monitor(monitor_id)

External MCAPI exposes functions to control the building of an SMV model K,

selection of the shared variables 𝓥, the specification of LTL properties 𝜑1, 𝜑2, ...,

𝜑n (𝓥), and the creation of monitors 𝔐i. Certain NuRV and nuXmv functions, which

are also used internally within RMV-MC are also exposed in the MCAPI, including:

• add_property

• show_property

• build_monitor

• generate_monitor

16 nuXmv work carried out within EU Framework Programme 7, D-MILS Project; ABRV and NuRV work

received funding from EU Horizon 2020, CITADEL Project.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 91

 Confidentiality: Public

These may be used by a UI that allows a user to examine, enable/disable, and add

properties to be monitored (D60).

Table 35: RMV subcomponent Monitor Library (RMV-ML)

Name Monitor Library

Functionalit

y
The RMV-ML is a database of various facts and rules used by other modules of the RMV

system. Information contained in the ML includes:

• SMV specification patterns

• LTL property patterns

Relevant

Use Cases

(D1.3)

 UC-0025

Functional

Requiremen

ts

The Monitor Library provides functions to retrieve information contained in the library

and to update information in the library. These functions are exposed through an RMV

internal API (D60, D61).

Table 36: RMV subcomponent Monitoring Framework (RMV-MF)

Name Monitoring Framework

Functionalit

y
RMV-MF is the hub and control system of RMV. It contains the Event Processing Point

(EPP) which receives events and current property verdicts from the monitors running

with their associated services. Received events are processed according to the

Monitoring Framework Configuration Data which includes Event-Response Packages

(ERP) that define event patterns and associated responses. Received events are checked

against cached event patterns. When a pattern match occurs the associated response from

the event response cache is executed by the Event Response Execution function.

Relevant

Use Cases

(D1.3)

 UC-0025

Functional

Requiremen

ts

The RMV-MF provides a Monitor Event API (MEAPI) that is used by the runtime

monitors to report events and monitor verdicts. Users of the AAAPI must authenticate

with an EPP token.

The RMV-MF also provides a Monitoring Request and Administration API (MRAAPI)

that is used by other SmartCLIDE subsystems and components to configure and to

request monitoring services (D62, D63).

Table 37: RMV subcomponent Audit Agent (RMV-AA)

Name Audit Agent

Functionalit

y
 Security auditing services comprising the abilities to:

• Define a set of auditable events

• Select a subset of the auditable events to be collected in the audit log

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 92

 Confidentiality: Public

• Define the format of the audit log record

• Generate an audit log record in response to a reported event

• Store audit records in a persistent audit log file through the Logging Agent

• Manage the audit service and audit log files

• Generate audit alarms to be delivered through the Notification Agent

Relevant

Use Cases

(D1.3)

 UC-0025

Functional

Requiremen

ts

RMV-AA provides an API (AAAPI) visible outside of the RMV to be used to administer

operations of the AA and to report audit events. Users of the AAAPI must authenticate

with an audit token.

Auditing is configured through the Audit API, which also provides APIs to provide the

abilities listed above. The APIs provide that ability to control audit functions, such as

establishing the set of auditable events, and the format of audit records; select the set

auditable events to subsequently audit; manipulate audit log files; and generate audit

records (D60, D61).

Table 38: RMV subcomponent Logging Agent (RMV-LA)

Name Logging Agent

Functionalit

y
Filter and store log messages in a persistent log storage according to the Logging

Configuration Data

Relevant

Use Cases

(D1.3)

 UC-0025

Functional

Requiremen

ts

The RMV-LA provides an API (LAAPI) visible outside of the RMV to be used to

administer the LA’s configuration data, which controls LA operation.

RMV-LA may be called by RMV-MF as part of an event response, or by RMV-AA to

commit log entries to the Persistent Log Storage. The logging is done according to the

Logging Configuration Data which may be modified by calls to the Log/Notify

Administration API. According to the configuration, part of the handling of a logging

operation can be to forward the logged event to the Notification Agent for direct

notification to SmartCLIDE components (D60, D61).

Table 39: RMV subcomponent Notification Agent (RMV-NA)

Name Notification Agent

Functionalit

y
Send direct notifications to SmartCLIDE components according to the Notification

Configuration Data

Relevant

Use Cases

(D1.3)

 UC-0025

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 93

 Confidentiality: Public

Functional

Requiremen

ts

The RMV-NA provides an API (NAAPI) visible outside of the RMV to be used to

administer the NA’s configuration data, which controls NA operation.

RMV-NA may be called by RMV-LA as part of a logging operation, or by RMV-AA to

raise audit alarms to subscribed SmartCLIDE components. The notification is done

directly over a committed link to another SmartCLIDE component or over the MoM

according to the Logging Configuration Data which is modified by calls to the

Log/Notify Administration API. According to the Notification Configuration Data the

manner of the notification is determined (D61).

The Logging Agent is concerned with creating persistent stores of log entries, while the Notification Agent

is concerned with communicating directly to SmartCLIDE components the occurrence of events of interest

to those components (such events may also be logged and/or entered in an audit trail).

4.4.4 Interface Specification

Table 40: Run-time Monitoring and Verification Subcomponent Interface

No Interface (/API) Description Type

Provided Required

1 ServiceInfo(Creation)/

getServiceSpec
Interface provided by Service Creation to

obtain information about a new service to be

created

 *

2 ServiceInfo(Registry)/

getServiceInfo
Interface provided by Service Registry to

obtain information about an existing service

 *

3 NuRV Commands

(accessed via the

NuRV Interaction

module)

Interface to use NuRV functions, including:

▪ NuRV/ build_monitor

Build the symbolic monitor for a given LTL

property

▪ NuRV/ generate_monitor

Generate standalone monitor

▪ NuRV/ heartbeat

Verify one input state in the symbolic

monitor

▪ NuRV/ read_model

Reads SMV model file

▪ NuRV/ flatten_hierarchy

Flattens hierarchy of modules

▪ NuRV/ encode_variables

Builds the BDD variables necessary to

compile the model into a BDD

▪ NuRV/ build_flat_model

Compiles flattened hierarchy into a Scalar

FSM

▪ NuRV/ build_model

Compiles the flattened hierarchy into a BDD

▪ NuRV/ add_property

Adds an LTL property to the list of properties

 *

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 94

 Confidentiality: Public

▪ NuRV/ read_trace

Loads a previously saved trace

4 Monitor Creation API Monitor creation functions, including:

• MonitorCreation/ createMonitor

Monitor Creation invoked by Service

Creation or SmartCLIDE orchestration.

• MonitorCreation/graphMonitor

Provide a visual graph of the monitor for

display by the UI

*

5 Monitor Event API Use monitoring functions, including:

• MonitorEvent/ reportEvent

Used by monitors (and potentially other

SmartCLIDE components) to incrementally

submit events for processing

*

6 Monitoring Request

and Admin API

Control Monitoring functions, including:

• MonitoringRequest/

listAvailableMonitors

Used by SmartCLIDE components to

discover available monitoring data channels

• MonitoringRequest/

registerForNotification

Register for notification of monitoring data

• MonitoringRequest/ loadiERP

Load immediate Event-Response Package

(E-R package expressed in Event-Response

Language) without activating it

• MonitoringRequest /unloadERP

Delete and ERP. Deactivate the ERP first if

the ERP is currently active

• MonitoringRequest/ activateERP

Activate a loaded ERP—begin looking for

event patterns specified in the ERP

• MonitoringRequest/ deactivateERP

Deactivate an ERP but do not unload it. It

can be re-activated without reloading

• MonitoringRequest/ currentERP

Get name(s) of currently active ER

package(s)

*

7 Log Admin API

Control Logging functions, including:

• LogAdmin/ logControl

Name and location of the log file(s); Open a

new log file

*

8 Notify Admin API

Control Notification functions, including:

• NotifyAdmin/ notifyControl

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 95

 Confidentiality: Public

Change Notify Configuration Data to add or

remove notifications and to change

notification parameters

9 Audit API Control auditing functions, including:

• Audit/ auditControl

Set audit record format; Get/Set list of all

auditable events; Choose whether audit

records are stored in a separate audit log file

or in the regular log

• Audit/ auditSelect

Select among auditable events to log; The

current audit selection may have the provided

selection added to it or it may be reset to the

provided selection

• Audit/ auditLogfile

Manipulate audit log files; create a new audit

log file; safely close previous file

• Audit/ auditGen

Generate and Audit Record with the specified

audit event identifier and audit data

according to the format specified in the Audit

Configuration Data

*

10 MOM API MOM provides asynchronous

communication by the Monitoring

Framework and the Notification Agent with

other SmartCLIDE components. The

Monitoring Framework will publish lists of

subscribe-able monitor information and

monitoring results to subscribing

SmartCLIDE components, will accept

subscriptions, and provide notifications to

subscribers

 *

4.4.5 RMV Component, Modules and Submodules

Runtime Monitoring & Verification is considered a SmartCLIDE component and is designated “RMV.”

The subcomponents that make it up are designated as modules “RMV-x” and their submodules are

designated “RMV-x-y” in documentation. The source code modules are named “rmv” for the top-level

component, “rmv_x” for modules, and “rmv_x_y” for submodules, where “x” and “y” are replaced by the

module and submodule labels. Following are the currently defined modules:

➢ rmv_mc - monitor creation
▪ rmv_mc_cm - create model
▪ rmv_mc_cps - create property specs
▪ rmv_mc_nui - interface to NuRV/nuXmv/NuSMV
▪ rmv_mc_iss - import service specification
▪ rmv_mcapi - monitor creation API

➢ rmv_mf - monitoring framework
▪ rmv_mf_ctl - monitoring framework control module
▪ rmv_mf_epp - event processing point
▪ eppapi - event processing point API
▪ rmv_mrapi - monitoring request API

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 96

 Confidentiality: Public

➢ rmv_ml - monitor library
▪ rmv_ml_mt - model templates
▪ rmv_ml_pst - property specification templates

➢ rmv_aa - auditing agent
▪ audit - generic audit manager
▪ auditapi - auditing API

➢ rmv_la - logging agent
▪ rmv_lnapi - logging and notification API

➢ rmv_na - notification agent
➢ cme_sim - simulation of the context system
➢ exec_sim - simulation of service/monitor execution
➢ miscellaneous and utility modules

▪ command - generic command interpreter
▪ command_rmv - definiton of commands specific to rmv tool
▪ erl - Event-Response Language of epp
▪ jsonresp - JSON responses for Web APIs
▪ param - global parameters
▪ procs - stored command procedures
▪ sessions - dynamic session information
▪ test - self test framework
▪ ui - simple console I/O utilities

Currently the entire RMV, including its modules and submodules, will run as a single process with multiple

threads. However, external tools, such as NuRV and graphViz are executed as separate processes.

The following subsections describe the key source code modules and submodules.

4.4.5.1 Runtime Monitoring & Verification (RMV) Module

This is the top-level module of the Runtime Monitoring & Verification component. It contains all of the

RMV modules including one that makes the various RMV functions available as a server with Web

interfaces.

In the assumption-based runtime verification (ABRV) monitoring paradigm the model of the system is

treated as an assumption on the behaviour the system being monitored. It can serve as predictive future

behaviour of the system being monitored but it is acknowledged that the actual behaviour of the system

may differ from that predicted by the model. This divergence between the model and the implementation

could happen in several ways: the code or the model may be “incorrect,” which could be the result of subtle

semantic differences such as from a misunderstanding of the semantics of the constructs of the

implementation language and the model specification language, from a difference in the level of abstraction

of the expressions, from incorrect translation of the model to the code (or vice versa depending on the actual

sequence of steps of development and validation), from a “bug” in tools such as a programming language

compiler or in the specification language interpreter, or unaccounted for dependencies or influences from

outside of the service.

4.4.5.2 Monitor Creation (RMV-MC) Module

This module works with Service Creation and Service Discovery to create monitors for services. It performs

the following functions:

▪ receives requests from SmartCLIDE service creation to construct a monitor for a service
▪ retrieves from service creation and other SmartCLIDE sources information about the service and

packages it as a service specification from which a monitor can be synthesized
▪ calls upon MC submodules to generate and compile the information needed to use the ABRV

method of monitor synthesis embodied in the NuRV tool
▪ invokes NuRV to synthesize a monitor, or, depending on an option, to determine that a monitor

can be synthesized

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 97

 Confidentiality: Public

▪ store information about the constructed monitor in the monitoring library
▪ notify the requester of the identifier of the generated monitor
▪ provide a function whereby the deployment service can use the monitor identifier to retrieve the

portions of the monitor that must run with the monitored service.

4.4.5.2.1 Create Model (RMV-MC-CM) Module

This module takes a service specification as input and returns a model of the service. The format of the

created structure is defined by the monitor library module. The substance of the model is a transition system

expressed in the SMV language. Information about the service to be monitored is to be obtained from other

SmartCLIDE components and placed into a service specification structure by the RMV-MC-ISS module.

The method of the module uses the service information to drive the application of a grammar for a fragment

of the SMV language as a generator for sentences corresponding to the service specification.

4.4.5.2.2 Create Property Specification (RMV-MC-CPS) Module

This module takes a service specification as input and returns a list of properties of the service to be

monitored. The format of the created properties is defined by the monitor library module. The substance of

a property is an expression in linear temporal logic (LTL). The monitor library contains a sub-library of

LTL patterns that can be used to express common properties or property fragments and composed to create

encoded properties of the service returned by this module. The properties, gleaned from information about

the service, may relate to correctness, constraints, exception conditions, timing, or anything consistent with

the available observables and the collection method.

4.4.5.2.3 Import Service Specification (RMV-MC-ISS) Module

This module is responsible for importing information about a service and building a service specification

in the form utilized by the other modules of Monitor Creation. The information may arrive as parameters

of an external request, i.e., by service creation, to the monitor creation API, or by this module directly

consulting other SmartCLIDE components for information about the service or other general information

common to all created services. The information to be collected must be sufficient to construct the model

and the properties of the service to be monitored. In some cases, not all of the information may be used.

Necessary information includes the variables, or a subset thereof, that define the state of the service,

definition of functions or operations that alter the values of the state variables, identification of the execution

model, and the conditions and/or timing of the steps for synchronization of variable value capture. The

nature and format of the information available from other SmartCLIDE components is a product of their

respective design efforts and is being reviewed as part of this design effort. Negotiations between the design

efforts will be undertaken as needed to obtain sufficient information for monitor synthesis. The information

gathered will be put into a defined service specification structure for consumption by the RMV-MC-CM

and RMV-MC-CPS modules.

4.4.5.2.4 NuRV Interface (RMV-MC-NUI) Module

This module provides an interface to the NuRV runtime verification tool. APIs are provided to create an

instance of NuRV and to establish a communication session with it. The NuRV Interface is able to direct

NuRV to import the model and properties for a service to be monitored and to generate online or offline

monitors for that service. When a monitored service is run the monitoring framework establishes a session

with NuRV and with the monitor sensor deployed with the service to step the monitor using heartbeat

messages that communicate to the monitor the value of state predicates.

4.4.5.3 Monitoring Framework (RMV-MF) Module

This module, the top-level module of monitoring framework, works with Monitor Creation and the Monitor

Library modules to collect events from monitored services, to respond to patterns of such events with

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 98

 Confidentiality: Public

associated with actions as defined by event response packages expressed in the Event-Response Language

(ERL), and to process requests from clients within SmartCLIDE to receive monitoring results. The

Monitoring Framework performs the following functions:

▪ accept events from each active monitor and process according to the steps defined for that

monitor
▪ store and interpret event response packages to execute defined responses for matched event

patterns
▪ forward requests for logging or notification generated by event responses
▪ accept requests from client processes to receive information related to ongoing monitoring

activities
▪ process the loading/unloading and activation/deactivation of event response packages according

to the ongoing monitoring activities.

4.4.5.3.1 RMV Control (RMV-MF-CTL) Module

Overall coordination, as necessary, of the execution of the functions of the Monitoring Framework listed

above is provided by this module. The module may simply comprise code in the top-level RMV-MF

module.

4.4.5.3.2 Event Processing Point (RMV-MF-EPP) Module

The EPP provides programmed responses to event patterns. The event patterns and responses are encoded

in the Event-Response Language (ERL). The response is implemented as a sequence of primitive action

commands that are independently and modularly definable. The EPP through its API can be instructed to

load Event-Response Packages (ERP) coded in ERL, and to activate/deactivate loaded ERPs. A distinct

API is provided for reporting events to the EPP which are then matched against event patterns in an ERP.

4.4.5.4 Monitor Library (RMV-ML) Module

The Monitor Library provides storage and access to various information needed within the RMV

subsystem. In particular, templates for creation of the service model in SMV, templates for the creation of

property specifications in LTL, and composition rules are used by the logic of the RMV-MC-CM and

RMV-MC-CPS modules to create the model and properties of a service.

4.4.5.4.1 SMV Model Templates (RMV-ML-MT) Module

This is a library of patterns for the construction of a model of the service to be monitored, expressed in

SMV. The patterns are a fragment of SMV expressed as attributed grammar rules in the Definite Clause

Translation Grammar (DCTG) logic programming formalism. The grammar rules are used as a generator,

rather than as a recognizer, that is guided through the grammar’s semantic attributes in the construction of

an SMV model using the available service specification information.

4.4.5.4.2 Property Specification Templates (RMV-ML-PST) Module

This is a library of parameterized Linear Temporal Logic (LTL) patterns taken from Dwyer’s LTL patterns

[77] that is usable by the property composition mechanisms in Create Property Specification module, and

ultimately exported in the LTL syntax defined by NuSMV.

4.4.5.5 Audit Agent (RMV-AA) Module

The Audit Agent encompasses an API module and an audit function module. The audit API provides

interfaces to administer the auditing functions. The audit functions include:

▪ changing the set of auditable events

▪ selecting the set of events to be audited

▪ managing the audit log storage

▪ managing audit alarms.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 99

 Confidentiality: Public

4.4.5.6 Logging Agent (RMV-LA) Module

The Logging Agent is responsible for creating a persistent storage log of events that are chosen to be so

logged. It can create a single integrated log or several distinct logs. Logging is used by the Audit Agent for

persistent audit log storage, by the Event Processing Point for logging event responses, and it may be used

by any other SmartCLIDE subsystem for centralized logging.

4.4.5.7 Notification Agent (RMV-NA) Module

The Notification Agent is able to communicate to other SmartCLIDE components either through

synchronous direct point-to-point connections or asynchronously through the MoM. Notification Agent

actions are performed according to configuration information maintained within the module by notification

administration functions.

4.5 Security

4.5.1 Vulnerability Assessment

Software security is a critical consideration for software development companies who want to provide safe

and dependable software to their clients [78]. Modern software applications are typically accessible through

the internet and handle sensitive data. As a result, they are continually vulnerable to harmful assaults.

Exploiting a single vulnerability can have far-reaching repercussions for both the end user (e.g., information

leakage) and the organization that owns the affected software (e.g., financial losses and reputation damages)

[79]. As a result, the software industry has shifted its focus towards creating proactive approaches that may

give developers with suggestive information about the security quality of their program by detecting

susceptible hotspots in the source code.

The Vulnerability Prediction (VP) mechanism is one such system that enables the prediction and mitigation

of software vulnerabilities early in the development cycle. By assigning limited test resources to potentially

risky items, VP models (VPM) can be utilized to prioritize testing and inspection efforts. Several VPMs

have been developed throughout the years that use a variety of software elements as inputs, such as software

metrics, static analysis warnings, and a text mining approach known as bag of words (BoW) [78], [80].

Although these models have shown encouraging outcomes, there is still room for improvement. Static

analysis warnings contain a high number of false positives in addition to severe alarms. The BoW technique

appears to produce better results than static analysis alerts and the usage of software metrics; however it is

overly reliant on the software project used for model training. As a result, current research has switched its

attention to more complex approaches for detecting patterns in source code that signal the presence of a

vulnerability. They concentrate on collecting information from a specific software application's raw source

code or from abstract representations of its source code, such as their Abstract Syntax Tree.

Using the raw text of the source code in the form of sequences of instructions, this work creates deep-

learning (DL) models capable of predicting whether a software component is susceptible or not, employing

approaches from the fields of natural language processing (NLP) and text classification. We used

approaches from the NLP discipline for this aim. The source code is seen as text, and the vulnerability

assessment work, like sentiment analysis, is regarded as a text classification problem. So, using NLP

techniques such as Bidirectional Encoder Representations from Transformers (BERT) [81], data pre-

processing and transformation to sequences, and training DL models (e.g., recurrent neural networks)

suitable for analysing sequential data, we detect potentially vulnerable components using a binary classifier

trained primarily on text token sequences from the source code. Furthermore, software measurements

acquired by static code analysers, in conjunction with text mining approaches, might be utilized to improve

the prediction performance of the models.

4.5.1.1 Text Mining

The process of tokenizing a text, such as the source code, is known as text mining. The simplest text mining

approach is BoW [82]. In BoW, the code is divided into text tokens, each of which is accompanied by the

number of times it appears in the code. So, each word corresponds to a feature, and the frequency of that

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 100

 Confidentiality: Public

feature in a component adds up to the value of that feature for that component. Aside from BoW, text

mining employs natural language processing techniques such as word2vec17 pre-trained embedding vectors

to extract semantic information from tokens.

4.5.1.2 Datasets

As part of the current effort, we created two distinct VPMs, one for each of two commonly used

programming languages, C/C++ and Java. We used a vulnerability dataset generated from two National

Institute of Standards and Technology (NIST) data sources in the case of C/C++: the National Vulnerability

Database (NVD) and the Software Assurance Reference Dataset (SARD) . This dataset contains 7651 class

files, 3438 of which are classified as susceptible and the remaining 4213 as clean. In the instance of the

Java model, a dataset given by OWASP is used to train and assess the model. We gathered source code

files written in both Java and C++ programming languages and used a variety of pre-processing approaches

to convert the datasets into a series of words (i.e.tokens). All comments, as well as the header/import

instructions that specify the usage of certain libraries in the class, were deleted from the dataset. The

numeric values were then changed with a unique identifier "numId$," while the text values and characters

were replaced with another unique identifier "stride$." All blank lines are also deleted before the text is

converted into a list of code tokens (such as new, char, strlen, and so on) in the order they occur in the

source code.

Because ML models understand numerical values, these generated tokens are replaced by an integer

(integer encoding4) after data purification. These numbers are then converted into vectors known as

embedding vectors. These vectors are numerical representations of text tokens and have a specified size.

Embeddings are essential because they can better represent a token than basic integer values.

4.5.1.3 Performance Metrics

Several performance metrics are available in the literature and are widely used to assess the prediction

performance of ML models. The number of True Positives (TP), True Negatives (TN), False Positives (FP),

and False Negatives (FN) produced by the models is generally used to compute these performance metrics.

In the case of vulnerability assessment, we lay a specific focus, as in earlier studies, on the Recall (R) of

the produced models, because the greater the Recall of the model, the more real vulnerabilities it predicts.

Aside from the capacity of the created models to identify the great majority of potentially vulnerable files

present in a software product, the volume of the produced FPs (i.e., neutral files identified as vulnerable by

the models) is crucial to examine because it is known to impact the models' practicability. Due to the high

number of FPs, developers must check a non-trivial number of neutral files in order to discover a vulnerable

file. As a result, the number of FP is related to the amount of human effort required by developers to detect

files containing vulnerabilities. The lower the number of FPs, the better the accuracy of the model. As a

result, we must consider both recall and precision. This finding emphasizes the significance of the f1-score,

which represents the balance of precision and recall. However, because it is more essential in VP to detect

susceptible (i.e., vulnerable) files at the price of creating FPs (but not too many), we used f2-score as our

assessment metric to adjust our models and evaluate them on testing datasets. The f2-score is a weighted

average of precision and recall, with recall being more important than precision. It is equivalent to:

𝐹2 =
((1 + 22) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(22 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

17 https://www.tensorflow.org/tutorials/text/word2vec

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 101

 Confidentiality: Public

4.5.1.4 Results

A pre-trained BERT [81] model is employed. It is, in fact, the pre-trained BERT model for sequence

categorization. In terms of size, it is classified as a BERT base model. This implies that the model possesses

the following characteristics:

Table 41: Hyper-parameters of BERT base model

Number of layers 12

Hidden size 768

Total parameters 110M

Two case studies are presented here, one for a C++ project and one for a Java project. The major objective

of these case studies is to assist the reader in understanding how the suggested solution works and what

advantages are expected. The project that was used for the C++ case study is stored at GitHub, and its URL

is: https://github.com/akshitagit/CPP. Below we provide screenshots from the request and the response

using POSTMAN:

Figure 52: The request and response of the Vulnerability Assessment service for the C++ Use Case

The same process is followed for the Java case study where we analysed the GitHub project with url

https://github.com/json-iterator/java:

https://github.com/akshitagit/CPP

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 102

 Confidentiality: Public

Figure 53: The request and response of the Vulnerability Assessment service of the Java Use Case

The useful information extracted by this model is that a vulnerability flag and a vulnerability score is

assigned to each source code file (in case of C++) or class file (in case of Java) in the project. The

vulnerability flag indicates the potential existence of vulnerabilities in the file and it can be equal either to

zero (i.e. indicating that the file is not likely to be vulnerable) or to one (i.e. indicating that the file is likely

to be vulnerable). The vulnerability score is the likelihood with which the model assigns these flags to the

files. In other words, the score denotes how sure the model is about its predictions.

4.5.2 Security related Static Analysis

A software vulnerability is a defect in the design, development, or configuration of software that in case of

exploitation it can violate a security policy [83]. The vast majority of software vulnerabilities are produced

by a small number of common programming errors [84],[85]. These errors are made by developers

throughout the coding process, usually due to a lack of security expertise or to the rapid production cycles.

It is, however, unrealistic to expect them to recollect hundreds of security-related issue patterns and bad

behaviors that they should avoid. As a result, effective tools are required to help them avoid introducing

such security issues and, as a result, write more safe code [85], [86].

Static analysis has been demonstrated to be effective in discovering security issues early enough in the

software development process. Their primary differentiating characteristic is that they are applied

immediately to the system's source or compiled code (or a representation of the source code), without the

requiring its execution. Indeed, static analysis has been shown to be useful in detecting security flaws early

in the software development process. It is regarded as an essential approach for enhancing security during

the software development process as a whole. This belief is shared by several software security experts,

while well-established secure software development lifecycles (SDLCs), such as Microsoft's SDL18,

OWASP's OpenSAAM19, and Cigital's Touchpoints20, advocate for the use of static analysis as the primary

mechanism for adding security during the SDLC's coding (i.e., implementation) phase. Furthermore,

according to the BSIMM21 initiative, ASA is a security activity frequently used by big technology

businesses such as Google, Microsoft, Adobe, and Intel. As a result, static analysis should be incorporated

18 https://www.microsoft.com/en-us/securityengineering/sdl
19 https://www.opensamm.org/
20 http://www.swsec.com/resources/touchpoints/
21 https://www.bsimm.com/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 103

 Confidentiality: Public

into the software development process for security-critical software systems such as web apps, IoT

software, etc.

Besides their capacity to discover possible security concerns (i.e., vulnerabilities) in a software product's

source code, static analysis techniques may be used as the foundation for obtaining more complex and

abstract information about the examined software's overall security. In reality, because static code analyser

outputs are large lists of raw warnings (i.e. alerts), they do not provide easy-to-understand insight to

software product stakeholders (e.g., developers, engineers, project managers, etc.). As a result, appropriate

knowledge extraction techniques should be utilized to extract security-related information from these raw

data and provide it to the user in a more natural and readily comprehensible manner (e.g., through

aggregation, visualization, etc.). To that aim, static analysis tool findings have recently begun to be utilized

as the foundation for the development of models and methodologies capable of aggregating the raw

warnings produced by the tools in order to give quantitative representations of critical security features of

software programs. The low-level alerts generated by static code analysers, as well as the high-level metrics

derived from their smart aggregation, are intended to facilitate the development of more safe software.

To that end, the SmartCLIDE project aims to provide solutions for monitoring and enhancing the security

of software applications (task- or workflow-level) based on static analysis, correctly configured to detect

security problems. In particular, we conducted a review of the literature to identify the best static code

analysers for detecting security problems. Then, we created the Security-related Static Analysis

Subcomponent (SSAS), a static analysis framework/platform that combines popular static code analysers

that are appropriately configured to identify security vulnerabilities. The framework (i.e., subcomponent)

is extremely configurable, enabling the user to specify which sorts of security vulnerabilities (e.g., Buffer

Overflow, Cross-site Scripting, Denial of Service, etc.) it should look for while evaluating a given software.

The platform is also highly extensible, allowing for the incorporation of new static code analysers to address

different demands, domains, and programming languages. Aside from the static analysis itself, an

aggregator module is used for advanced aggregation of the static analysis findings to offer additional high-

level insights (e.g., at the workflow level) and more abstract information with regard to the security level

of the examined program. State-of-the-art models and aggregation approaches were used and extended for

the design of the aggregator module to fit in the framework of the SmartCLIDE project. The quantitative

aggregated expressions are anticipated to give helpful insights to non-technical stakeholders such as project

managers, facilitating decision making across the whole software development process. A REST API is

provided to access the SSAS subcomponent. It is illustrated in two case studies, which focus on real-world

open-source applications.

4.5.2.1 Security Analysis Platform/Framework

One critical step in our study was to conduct a survey of current static code analysers that might be used to

check and validate the security level of software products. There are several static analysis tools available,

each of which covers a single language or a group of languages. Research has been performed on the right

tools to incorporate into the model, which must address a wide variety of security concerns while also being

extendable and relevant to other programming languages in the future. The first focus of SmartCLIDE is

on evaluating software products built in the Java and Python programming languages. The tools that will

be chosen for integration into the framework should be able to detect errors in the source code, offer a

comprehensive analysis of the code and the error, propose an indicated solution to the problem, and detect

a wide variety of security risks.

To comply with the project's open-source philosophy, we opted to employ open-source technologies.

Furthermore, this would provide the community with free access to our ideas, improving their usefulness.

The tools described above were deliberately picked since each one covers a different field, and combining

them would result in greater overall coverage of security concerns. CK22 offers a number of metrics for

Java code, measurements that are directly applicable to code characteristics and may be incorporated in

security models. Furthermore, CK generates thorough csv files that list all of the errors discovered by the

tool as well as their location (file/class, line of code, directory). We chose to allow users to calculate

22 https://github.com/mauricioaniche/ck.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 104

 Confidentiality: Public

software metrics using our security analysis methodology, because there are several studies that indicate a

tight link between software metrics and software vulnerabilities [87], [88], [89], [90].

PMD23 is a static code analyser that identifies infractions to specified rules based on best practices. PMD

defines a collection of rules from which one may construct appropriate rulesets addressing security

problems. PMD comprises exception handling rules, abused functionality rules, null pointer rules, and other

rules that are combined together to build a ruleset for particular situations (Null Pointer ruleset, Exception

Handling ruleset, etc.). Furthermore, PMD offers a thorough csv file (NullPointer.csv,

ExceptionHandling.csv) addressing the concerns and rules of each ruleset inside the source code for each

individual ruleset. We have used PMD as the foundation of security models in the literature [91].

SonarQube24 is a platform that currently supports 27 programming languages. It comes with a range of

security profiles by default, as well as the ability to construct profiles that address particular security

concerns that the user may choose to include in a security profile. By providing an API, SonarQube exposes

the proper endpoints to retrieve the analysis scores in JSON form, after completing the analysis.

Additionally, by visiting the SonarQube site, a detailed analysis of the project analysed with all the metrics

and issues raised is presented in Sonar GUI, giving the user the ability to examine everything in detail.

Pylint and Bandit are two static analysers designed particularly for Python. Both improve Sonarqube's

security coverage and round out the entire security coverage for Python applications.

Following the selection of the most appropriate static code analysers, the service that matches to our security

analysis framework/platform is built. The framework's functionality is accessible via a RESTful API. In

detail, the user can access the service using an HTTP request. This request should include the url of the

project to be examined (e.g., GitHub, GitLab, Bitbucket, etc.), the language of the project to be analysed

(currently Python or Java), and a JSON including the desired configuration of the selected tools as well as

of the aggregator. The entire architecture is suited to scalability. Specifically, our service is built on platform

logic, which means that the user will be able to access it via HTTP requests, it will be easy to include in a

variety of projects because its functionalities are exposed via a RESTful API, and it will be easy to extend

and support more programming languages and tools included, because it is built in MVC logic, which

means that there is a different sub-segment for each tool.

When the analysis is finished, the service returns a JSON file containing the values of each property picked

by each independent tool, as well as the property scores, characteristic scores, and overall security index.

Furthermore, by invoking a different URL, the user has the opportunity to save locally a full CSV report

from all the tools used, detailing errors in the source code, their specific location, and, in some cases,

suggestions for how to address such issues. The security analysis platform is highly customizable.

Aside from specifying the tools and security concerns the framework should look for, the user may

customize the aggregator via the submitted request. More specifically, the user may choose the security

model's properties and characteristics, as well as the thresholds for assessing the properties and the weights

for computing the scores of the characteristics and the overall security score of the system. This is

significant because it enables the user to build their own models for examining the security level of

software, since it is well recognized in the literature that no one model is enough for evaluating all types of

software [85]. It should be mentioned, however, that predefined security models have been developed based

on our security expertise as default security profiles to be used by users either for assessing their software

projects or as a blueprint on how to construct their own models.

4.5.2.2 Results

The suggested security analysis framework/platform is presented in this section through two case studies

on real-world open-source software applications. In particular, two examples are presented, one for Java

and one for Python programming language. The primary objective of these case studies is to assist the

reader in understanding how the suggested solution works and what advantages are anticipated. As

previously stated, the functionality of our model is provided via a REST API. We will illustrate how to

23 https://pmd.github.io/.
24 https://www.sonarqube.org/.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 105

 Confidentiality: Public

correctly call our services using POSTMAN, what sort of request our endpoint allows, the response to the

request, and the functionality behind the calls.

A screenshot of the POSTMAN request for evaluating a Java project using the default Java model is shown

below. This is a tutorial for anyone interested in learning about the structure of a request and using our

platform.

Figure 54: The request that needs to be submitted for analysing a Java project using the SSAS

service

When the analysis is finished, the service delivers a JSON file containing the findings of the analysis. The

SSAS response for the software repository utilized in the current scenario is shown below.

Figure 55: The response (i.e., evaluation report) of the SSAS service for the Java use case

The first section of the JSON contains the normalized values of the attributes chosen from each tool.

Following that, the “Property Scores” section provides the utility function-calculated property scores as

well as the thresholds for each property. Following that, “Characteristics Scores” were incorporated, which

were computed by multiplying the weight by the property score for each characteristic. Finally, the overall

“Security Index” of the project under consideration is given, which includes the security score as

determined by the characteristic scores.

The similar method is used for Python project analysis. The only parameter that changes are the properties,

which include the appropriate tools for Python analysis as well as the project's url and the language, which

should be defined as Python. A screenshot of the POSTMAN request is shown below. This is a tutorial for

anyone interested in learning about the structure of a request and using our platform.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 106

 Confidentiality: Public

Figure 56: The request submitted for analysing a Python project using the SSAS service

Figure 57: The response of the SSAS service using Python project

For the time being, the idle Python security model supports SonarQube characteristics. In the future, open-

source tools such as Bandit and Pylint will be introduced to improve Python's security. Again, as indicated

in the response, the first portion of the JSON contains the normalized values of the SonarQube attributes.

Following that, the “Property Scores” section provides the utility function-calculated property scores as

well as the thresholds for each property. Following that, “Characteristics Scores” were incorporated, which

were computed by multiplying the weight by the property score for each characteristic. Finally, the overall

“Security Index” of the project under consideration is given, which includes the security score as

determined by the characteristic scores.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 107

 Confidentiality: Public

Figure 58: Software Security Assurance Module

Figure 59: Quantitative Security Assessment Subcomponent

Name Quantitative Security Assessment

Functionality Responsible for assessing security level of software applications

based on Security Assessment Model

Relevant Use Cases (D1.3) -

Functional Requirements D47, D48, D49

Figure 60: 2Vulnerability Prediction Subcomponent

Name Vulnerability Prediction

Functionality Is responsible for predicting security issues (i.e., vulnerabilities)

Relevant Use Cases (D1.3) -

Functional Requirements D50, D51

4.5.3 Interface Specification

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 108

 Confidentiality: Public

Table 42: Software Security Assurance Component Interfaces

No API Description Type

Provided Required

1
Security-related

Static Analysis

(SSA) API

The SSA, which is a subcomponent of the

Software Security module, provides a web

service which is exposed via API. Each

request has mandatory parameters which are:

• repository: Either a URL referring to

project’s repository (e.g., GitHub,

GitLab, Bitbucket, etc.) or a zipped

file containing the project from the

local directory.

• properties: a JSON file containing

the metrics alongside with the

thresholds of each metric for the

model extraction. It also contains the

characteristics with the weights for

the model extraction.

• sonarqube: a JSON file containing

the selected SonarQube metrics

alongside with the thresholds of each

metric for the model extraction.

• language: A value indicating the core

language in which the analysed

software project has been

implemented (e.g., “java” if the

selected software project is written in

Java programming language).

SSA Web service returns a JSON file

containing the security assessment report,

which includes the security index and the

security scores of the model attributes (e.g.,

properties, characteristics, etc.), and the

detailed low-level static analysis results

(optional).

*

2 Vulnerability

Assessment (VA)

API

The VA, which is a subcomponent of the

Software Security component, provides a web

service, which is exposed via API. Each

request has mandatory parameters which are:

• project: Either a URL referring to

project’s repository (e.g., GitHub,

GitLab, Bitbucket, etc.) or a zipped

file containing the project from the

local directory.

• language: A value indicating the core

language in which the analysed

software project has been

implemented (e.g., “java” if the

*

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 109

 Confidentiality: Public

No API Description Type

Provided Required

selected software project is written in

Java programming language).

VA Web service returns a JSON file

containing the vulnerability prediction report.

This report actually contains the names of the

application files that are identified as

vulnerable by the model, along with relevant

information (e.g., each file’s probability of

containing vulne

rabilities, a flag indicating whether they are

vulnerable or not, etc.).

3 SonarQube API SonarQube provides a web API to expose its

functionalities to other applications and

services. SonarQube platform provides a set

of tools to analyze source code and return the

results in a JSON format through HTTP calls.

We use SonarQube platform to enhance our

security model with properties provided by

the platform as well as language extension.

• api/issues/ call accepts as a parameter

the vulnerability (buffer-overflow,

csrf, etc.) and returns an extensive

JSON report of the vulnerability

selected regarding the user's project.

• api/measures/ accepts a String

parameter with comma separated

metrics (e.g., code_smells, bugs,

ncloc) and returns results of the

parameters requested.

*

4 Publish API Security Components requires the Publish

API exposed by the SmartCLIDE Message-

Oriented-Middleware (MOM) to send

message to the Service Creation, Composition

and Testing Component.

*

5 Consume API Security Components requires the Consume

API exposed by the SmartCLIDE Message-

Oriented-Middleware (MOM) to receive

messages from Service Creation, Composition

and Testing Component, Service Discovery,

and RMV component.

*

4.6 Intercommunication

Message Oriented Middleware (MOM) component is responsible for the inter-component

communication with the SmartCLIDE platform. The MOM is designed and implemented as a message

broker which is a piece of software that enables applications, services, and systems to communicate with

one another to exchange information[92] [93]. This communication is achieved by translating messages

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 110

 Confidentiality: Public

between formal messaging protocols, allowing independent services written in different languages or

implemented in various platforms to interact with each other.

SmartCLIDE’s MOM component offers standardized means of handling the data flow between the

components of the SmartCLIDE platform. Thus, developers using the SmartCLIDE platform can focus on

the on the core logic of the application. MOM can validate, route, store, and deliver messages to the

appropriate destinations, allowing senders to issue messages without knowing where the receivers are and

whether they are active or not, thus facilitating the decoupling of services and processes within systems.

There are several message broker’s available, with popular choices being Apache Kafka and RabbitMQ. In

following section briefly introduce key technologies used for the design and implementation of the MOM

component, followed by presentation of our actual design approach.

4.6.1 Background Information

4.6.1.1 Message brokers

A message broker often relies on a message queue, a component that orders and stores messages until the

receiving applications can process them, in order to guarantee message delivery and reliable message

storage. Messages within a message queue are stored in the same order as they were transmitted and

remained in the queue until receipt is confirmed.

A message broker offers two basic message distribution patterns:

▪ Point-to-point messaging: In this pattern, there is a one-to-one relationship between the sender

and the receiver of the message. Each message is sent and consumed only once. This pattern is

usually used when some action needs to be performed only once. When multiple consumers are

used, each consumer typically receives a portion of the message stream to allow for concurrent

processing.

▪ Publish/subscribe messaging: This is a broadcast-style distribution method, often referred to as

“pub/sub” where producers send messages on a topic. In this model, the producer is known as a

publisher, and the consumer is known as a subscriber. One or many publishers can publish on

the same topic, and a message from one or many publishers can be received by many subscribers.

Subscribers subscribe to topics, and all subscribers on the topic receive all messages published

to that topic.

4.6.1.2 Apache Kafka

Apache Kafka25 is an open-source stream-processing software platform aiming to provide a unified, high-

throughput, low-latency framework for handling real-time data feeds. It has been developed by the Apache

Software Foundation and is written in Java and Scala. Kafka does not implement the notion of a queue.

Instead, Kafka stores collections of records in categories called topics. For each topic, Kafka maintains a

partitioned log of messages. Each partition is an ordered, immutable sequence of records, where messages

are continually appended. Kafka is distributed; therefore, topic partitions are replicated across various

nodes.

Producers, client applications that publish messages to Kafka, create the data within the topics and

consumers, client applications that subscribe to topics, read from those topics. In Kafka, messages are just

simple byte arrays; the developers can utilize them in order to store any object in any format that they wish

(e.g., JSON, plain text etc.). Developers can also opt to attach a key to a message, guaranteeing that all

messages with that specific key will get to the same partition. During consumption from a topic, a group

with multiple consumers can also be configured. Each of the consumers in a specific group will access

messages from a particular subset of partitions within the topics they subscribe to. This will ensure that

25 https://kafka.apache.org/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 111

 Confidentiality: Public

every message is delivered to one consumer in the group, and all of the messages that carry the same key

are sent to the same consumer.

Figure 61 shows the architecture of Apache Kafka:

Figure 61: Apache Kafka Architecture

Apache Kafka supports use cases such as metrics, activity tracking, log aggregation, stream processing,

commit logs and event sourcing. The following messaging scenarios are especially suited for Kafka:

▪ Streams with complex routing, throughput of 100K/sec events or more, with “at least once”

partitioned ordering

▪ Applications requiring a stream history, delivered in “at least once” partitioned ordering. Clients

can see a ‘replay’ of the event stream

▪ Event sourcing, modelling changes to a system as a sequence of events

▪ Stream processing data in multi-stage pipelines. The pipelines generate graphs of real-time data

flows.

Kafka is a distributed system consisting of servers and clients that communicate via a high-performance

TCP network protocol. It can be deployed on bare-metal hardware, virtual machines and containers in on-

premises as well as cloud environments. Moreover, the Kafka community has built optimized client

libraries for many programming languages, such as Python, PHP, Node.js, .NET and more. However, since

Kafka is written in Java, the native Java client library delivers the best possible performance.

4.6.1.3 RabbitMQ

RabbitMQ26 is one of the most widely used open-source message brokers [94]. It was originally based on

the Advanced Message Queuing Protocol (AMQP), but later has been modified to support other messaging

protocols as well, like Message Queuing Telemetry Transport (MQTT) and Streaming Text Oriented

Messaging Protocol (STOMP). It is implemented in Erlang OTP, a technology tailored for building reliable,

fault tolerant, stable, and highly scalable systems capable of handling very large numbers of concurrent

operations [95] [96].

RabbitMQ is a general-purpose message broker that has been designed to be used for a variety of messaging

scenarios and provides client libraries for several programming languages such as Java, Python, PHP and

26 https://www.rabbitmq.com/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 112

 Confidentiality: Public

.NET. It uses a smart broker/dumb consumer model focused on delivering messages to consumers

constantly and supports several variations of pub-sub, point to point and request-replaying messaging

techniques. Moreover, it offers both synchronous and asynchronous modes of communication.

A really strong asset of RabbitMQ is the power routing capabilities it provides. The routing logic in

RabbitMQ is implemented in different (so-called) exchange types. An exchange is responsible for routing

the messages to different queues. Messages are not published directly to a queue; instead, the producer

sends messages to an exchange which forwards the message to the appropriate queue(s) with the help of

bindings and routing keys. A binding is a kind of link between a queue and an exchange. There are four

exchange types:

▪ Direct exchanges route messages according to the routing key that the message carries. The

routing key is a string of words, separated by periods, that has some relevance to the message.

▪ Fanout exchanges route messages to all available queues. In this broadcasting type of exchange,

the routing key is ignored.

▪ Topic exchanges route messages to one or more queues according to a complete or partial match

with the routing key.

▪ Header exchanges route messages based on the message headers, which can contain more

attributes than a routing key.

Figure 62 presents a typical message flow in RabbitMQ:

Figure 62: RabbitMQ message flow

As it can be seen, the producer publishes a message to an exchange. The exchange receives the message

and routes it taking into account different message attributes, such as the routing key. In order for a queue

to receive a message from an exchange, bindings have to be created between the queue and the exchange.

In the specific case depicted in figure n. there are two bindings to two different queues from the exchange.

The exchange routes the message into the queues depending on message attributes. Consequently, the

message is received by the queue and it remains in the queue until a consumer retrieves it. Lastly, the

consumer receives and handles the message.

RabbitMQ offers several plugins that can be added to extend use cases and integration scenarios. These

plugins extend the core broker functionality in various ways such as, system state monitoring, support for

more protocols, node federation and more. A very useful plugin is the RabbitMQ Management plugin which

is included in the RabbitMQ distribution and can be enabled by the RabbitMQ server administrators in

order to provide a GUI for managing and monitoring RabbitMQ. The Management plugin offers a user-

friendly interface that allows the system administrators to handle and monitor the RabbitMQ server from a

web browser. The plugin periodically collects and aggregates data about many aspects of the system and

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 113

 Confidentiality: Public

the management UI is implemented as a single page application which relies on the RabbitMQ HTTP API.

Some of the core features of the plugin are:

▪ Declaring, listing and deleting exchanges, queues, bindings, users and user permissions

▪ Monitoring queue length, message rates (globally and per queue, exchange or channel) and

resource usage of queue

▪ Managing users (provided administrative permissions of the current user).

▪ Managing policies and runtime parameters (provided sufficient permissions of the current user).

▪ Forcing to close client connections and purge queues

▪ Sending and receiving messages (useful in development environments and for troubleshooting).

Additionally, the UI application supports recent versions of Google Chrome, Safari, Firefox, and Microsoft

Edge browsers. Figure 63, Figure 64, and Figure 65 below show some tabs of the Management UI menu.

Figure 64 presents charts for queued messages and message rates, while Figure 64 and Figure 65 show the

declared exchanges and queues respectively.

Figure 63: Message queues and rates

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 114

 Confidentiality: Public

Figure 64: Declared message exchanges

Figure 65: Declared queues

4.6.1.4 Spring, Spring Boot and Spring AMQP

Spring27 is a popular, open-source framework that provides comprehensive infrastructure support for

developing Java applications. Spring is based on dependency injection and Inversion of Control28 , two key

principles that enable developers to create modular applications consisting of loosely coupled components.

It also offers built-in support for typical application requirements, such as validation, data binding,

exception handling, resource, and event management etc. and integrates with various Java EE

technologies29 like RMI (Remote Method Invocation)30 and Java Web Services31. In general, Spring

Framework provides all the tools and features developers need in order to create, in a loosely coupled way,

cross-platform Java EE applications capable of running in any environment 32.

Spring Boot33 is an extension of the Spring framework, which eliminates the boilerplate configurations

required for setting up a Spring application. Although Spring is a capable and comprehensive framework,

a significant amount of time and knowledge is still necessary in order to configure, set up and deploy a

Spring application. Spring Boot mitigates the effort required from a developer's perspective and simplifies

the development of web applications and microservices with Java Spring Framework, by providing the

following capabilities:

▪ Auto-configuration of Spring and 3rd party libraries whenever possible

▪ Creation of stand-alone Spring applications by embedding directly web servers, such as Tomcat,

Jetty or Undertow (no need to deploy WAR files)

▪ Opinionated ‘starter' dependencies to simplify the build and application configuration

▪ Provision of production-ready features such as metrics, health checks, and externalized

configuration

▪ No requirement for XML configuration

Spring AMQP34 is the Spring implementation of AMQP-based messaging solutions and applies the spring

core dependency injection to the AMQP-based messaging application programming. Spring AMQP

consists of two modules, spring-amqp and spring-rabbit. The 'spring-amqp' module is the base abstraction

for the AMQP Protocol implementation and represents the core AMQP “model”, whereas the 'spring-rabbit'

27 https://spring.io/
28 https://www.educative.io/edpresso/what-is-inversion-of-control
29 https://www.oracle.com/java/technologies/java-ee-glance.html
30 https://www.ibm.com/docs/en/sdk-java-technology/7?topic=uc-java-remote-method-invocation-2
31 https://docs.oracle.com/javaee/6/tutorial/doc/gijvh.html
32 https://www.ibm.com/cloud/learn/java-spring-boot
33 https://spring.io/projects/spring-boot
34 https://spring.io/projects/spring-amqp

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 115

 Confidentiality: Public

module is the RabbitMQ implementation which provides broker-specific implementations for the

abstractions offered by spring-amqp. These two modules combined provide features such as:

▪ Connection management of the RabbitMQ broker

▪ Automatic declaration of queues, exchanges and bindings

▪ RabbitTemplate, a class for sending and receiving messages easily

▪ Listener container for asynchronous processing of inbound messages

The Spring AMQP project can be easily integrated into a Spring boot application by simply adding the

spring-boot-starter-amqp dependency to the application’s pom.xml, as shown in Figure 66. Spring Boot

Starters35 [16] are dependency descriptors that contain a lot of predefined dependencies under a single

name, decreasing the total number of dependencies to be added and the configuration time for developers.

Figure 66: Integration of Spring AMQP into Spring boot application

Another advantage of using Spring AMQP along with Spring Boot is that several configurations of the

RabbitMQ server, such as host name and port number, can be easily performed through the use of a simple

properties file, as described in Figure 67.

Figure 67: Configuration of the RabbitMQ server

There are two ways to receive a message from the broker in Spring AMQP. The simplest option is to poll

for one message at a time with a polling method call. The more complicated yet more common approach is

to register a listener that receives messages on-demand, asynchronously.

In the polling consumer scenario, the AmqpTemplate36, [17] the core interface for sending and receiving

messages in Spring AMQP, can be used for polled message reception. The AmqpTemplate takes care of the

message receive and reply phases and includes several convenient methods for synchronously receiving,

processing and replying to messages. Therefore, in most cases, developers should provide only an

implementation of a callback function to perform some business logic for the received message and build

a reply object or message, if needed37 [18].

In the asynchronous consumer scenario, the easiest way to receive a message asynchronously is by using

the annotated listener endpoint infrastructure which exposes a method of a managed bean as a Rabbit

listener endpoint. Figure 68 shows an example of the @RabbitListener annotation.

35 https://github.com/spring-projects/spring-boot/tree/main/spring-boot-project/spring-boot-starters
36 https://docs.spring.io/spring-amqp/docs/current/reference/html/#amqp-template
37 https://docs.spring.io/spring-amqp/docs/current/reference/html/#polling-consumer

https://github.com/spring-projects/spring-boot/tree/main/spring-boot-project/spring-boot-starters
https://docs.spring.io/spring-amqp/docs/current/reference/html/#amqp-template
https://docs.spring.io/spring-amqp/docs/current/reference/html/#polling-consumer

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 116

 Confidentiality: Public

Figure 68: An example of the @RabbitListener annotation

In the above example, every time a message is available on the queue named myQueue, the processOrder

method is invoked accordingly (in this case, with the payload of the message). The annotated endpoint

infrastructure creates for each annotated method a message listener container behind the scenes, which is

constantly listening for new messages arriving to the queue(s)38 [19].

4.6.1.5 RabbitMQ vs Apache Kafka

A lot of discussion has been made over the years about which is the best message broker between Apache

Kafka and RabbitMQ. The truth is that deciding whether to use Kafka or RabbitMQ was never easy [93]

and the decision is highly dependent on the individual use case scenario. Furthermore, with both

technologies improving day by day, the margins of advantage of the one tool over the other have become

narrower.

In the context of SmartCLIDE, the main reason we opted in favor of RabbitMQ is that Kafka is not just a

message broker. It is a streaming platform which excels in storing and analyzing streaming data and is very

useful for systems that need to gain insight into the data. However, this kind of functionality is excessive

for the needs of the SmartCLIDE project where the main role of the MOM component is to serve just as a

means of communication between the different applications. RabbitMQ has been used extensively in the

industry as the middleman between microservices and can scale more than enough, if necessary, to cover

the needs of the SmartCLIDE project.

Additionally, there are some more reasons [92] for choosing RabbitMQ instead of Kafka, which are briefly

described below:

▪ RabbitMQ has a more flexible routing mechanism and supports four different routing options,

while Kafka has only one very simple routing approach

▪ RabbitMQ can support message priority by using queues called priority queues, which can

deliver messages based on the priority that was set on the message. This can be very helpful in

cases where some important messages must be delivered faster than other messages of less

significance that have been placed earlier in the queue. Kafka on the other hand does not provide

such kind of functionality

▪ The architecture of Kafka is quite complicated, and a developer should be familiar with concepts

such as message offsets, partitions, and consumer groups. On the contrary, the way RabbitMQ

works is simpler and straighter forward

▪ RabbitMQ has a built-in, user-friendly graphical interface for monitoring the RabbitMQ server

via a web browser. For Kafka, there are also monitoring tools, both commercial and open source,

but none of them comprises a built-in feature of the Kafka platform and their integration requires

extra amount of time and effort.

38 https://docs.spring.io/spring-amqp/docs/current/reference/html/#async-consumer

https://docs.spring.io/spring-amqp/docs/current/reference/html/#async-consumer

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 117

 Confidentiality: Public

4.6.2 Design Approach

For the implementation of the MOM component, we have used the official RabbitMQ Docker image [97]

in order to run the RabbitMQ server inside a Docker container. This is the easiest way to have a RabbitMQ

instance up and running and enhances portability. For making RabbitMQ available to the other

SmartCLIDE components, we have set up a RESTful API with the help of Spring Boot, thus offering HTTP

access to the message broker. The API is briefly described in 4.6.3 and provides functionality for publishing

messages to queues and consuming messages from queues as well. At first, we implemented some test

queues and tried to send/receive test messages to/from these queues using the REST API to verify that the

defined interfaces/endpoints work as expected.

Although a component can use the REST API to send a message to a queue instantly, the consumption of

a message from a queue cannot take place immediately just by using the HTTP protocol, since the server

(message broker) is not able to initiate a communication to the client (consumer). Instead, the message

broker can send the message to the consumer only after receiving an HTTP GET request first. This means

that a component should periodically send requests to the broker to check if there are any incoming

messages in the corresponding queues, which is not very efficient from a performance perspective. To avoid

this issue, we have investigated WebSockets [98], a technology that establishes a bidirectional, full-duplex

communications channel between a client and a server, which operates over HTTP through a single TCP

socket connection. This means that both parties can start sending data at any time, so the server can

independently send data to the client without the client having to request it.

Apart from the REST API and the WebSockets, there is also another way for the SmartCLIDE components

to access the message broker. Since all the components will be located in the same cluster and they will be

able to communicate internally via the cluster network, the RabbitMQ AMQP-based API [99] can be

utilized directly by the different components. RabbitMQ uses the AMQP protocol by default and offers

numerous AMQP-based clients supporting the most popular programming languages. Each component can

integrate the corresponding client library in its application code and communicate with the broker directly

to connect to the appropriate queues and retrieve the desired messages. Although this type of

communication is faster compared to the HTTP-based communication offered by the REST API, the use

of the REST API can be still very useful in case there is no RabbitMQ client library available for the

programming languages used for developing a component or if for some reason the message broker should

be accessed from the outside world, since the RabbitMQ AMQP-based API can be utilized directly only

inside the SmartCLIDE cluster.

Once we finalized the design and proceed with initial implementation, we focused on the specification of

the publishing and subscribe ques as outlined in Table 43. To increase the readability, we have introduced

the following abbreviations:

▪ For the components: Service Discovery (SD), Service Composition (SC), Security (S), Run-time

Monitoring & Verification (RMV), Run-time Monitoring & Simulations (RMS), Deep Learning

Engine (DLE), Context Handling (CH), Smart Assistant (SA), Deployment (DPL)

▪ For the roles: Producer (P) and Consumer (C).

 Table 43: MOM publish/subscribe messaging ques

 SD(AIR) SC (UoM) S (CERTH) RMV (TOG) RMS (WT) DLE (AIR) CH (ATB) SA (AIR) DPL (WT)

SD (AIR) Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐

MoM: ☐

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

SC (UoM) Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 118

 Confidentiality: Public

 SD(AIR) SC (UoM) S (CERTH) RMV (TOG) RMS (WT) DLE (AIR) CH (ATB) SA (AIR) DPL (WT)

MoM: ☒

P: ☒

C: ☒

MoM: ☒

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

S(CERTH) Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☒

P: ☒

C: ☒

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

RMV
(TOG)

Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☐

MoM: ☒

P: ☒

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☐

RMS (WT) Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

DLE (AIR) Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐

MoM: ☐

P: ☐

Cr: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☒

C: ☐

MoM: ☐

P: ☐

C: ☐

CH (ATB) Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

SA (AIR) Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☒

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

DPL (WT) Direct: ☒ Direct: ☒ Direct: ☐ Direct: ☒ Direct: ☐ Direct: ☐ Direct: ☐ Direct: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MoM: ☒

P: ☐

C: ☒

MoM: ☐

P: ☐

C: ☐

MOM component diagram is presented in Figure 69. As shown in Figure 69 below, the MOM component

resides in the center of the system architecture and comprises three sub-components, namely the Message

Checker, the Message Transformer and the Message Router. The Message Checker is the first point of

interaction when communicating with the MOM component and verifies the validity of the

incoming/outcoming messages while the actual routing of the messages is implemented by the Message

Router sub-component. The Message Transformer modifies each message accordingly so that it can be

parsed at both ends (publisher and consumer).

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 119

 Confidentiality: Public

Figure 69: MOM Component Diagram

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 120

 Confidentiality: Public

Table 44: MOM Message Checker Subcomponent

Name Subcomponent 1

Functionality
MoM will be able to check if the exchanged messages, either at the

sender’s or at the receiver’s end, comply with a specific format.

Relevant Use Cases (D1.3)
 -

Functional Requirements
-

Table 45: MOM Message Transformer Subcomponent

Name Subcomponent 1

Functionality MoM will transform the data/messages from the sender’s native format

to the receiver’s native format.

Relevant Use Cases (D1.3)
-

Functional Requirements
-

Table 46: MOM Message Router Subcomponent

Name Subcomponent 1

Functionality MoM should support several message routing policies and message

delivery guarantees (e.g., at-most-once, and exactly-once).

Relevant Use Cases (D1.3)
 -

Functional Requirements
 -

4.6.3 Interface Specification

The Message Broker is accessible via a REST API. The base URL is:

http://160.40.53.126:8080/broker/api/v1

MOM component has 2 provided interfaces which are described in Table 47.

http://160.40.53.126:8080/broker/api/v1

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 121

 Confidentiality: Public

Table 47: MOM Component Interfaces

N

o

API Description Type

Provid

ed

Requir

ed

1
Publish

API This API shall be used by a component that wants to send a message

to another component. In order to send a message to the queue of

the receiver, the producer of the message would make the

following HTTP call:

http://160.40.53.126:8080/broker/api/v1/publisher/{publisherNam

e}/{consumerName}

For example, if Component A wants to send a message to

Component B, the following endpoint should be used:

http://160.40.53.126:8080/broker/api/v1/publisher/componentA/c

omponentB

In case the name of the consumer is not specified in the request

path, the message will be broadcasted to all the components that

can get messages from the specific producer. For example, the

HTTP call:

http://160.40.53.126:8080/broker/api/v1/publisher/componentA

would broadcast a message to all the components that have been

defined as consumers for Component A.

*

2 Consume

API

This API provides access to the queue a component is listening to.

All the other components, that want to communicate with the

specific component, will send their messages to that queue. Then,

the receiving component can get these messages by accessing the

following endpoint:

http://160.40.53.126:8080/broker/api/v1/consumer/{componentNa

me}

For example, if Component A wants to get the incoming messages

from its queue, the following endpoint should be used:

http://160.40.53.126:8080/broker/api/v1/consumer/componentA

*

*

Publishing messages example:

According to the MoM Specification Table, the Service Creation component can send messages to the

Service Discovery, Security, Deep Learning and Smart Assistant components. The following HTTP call

can be used by the Service Creation component to broadcast a message to all the aforementioned

components:

POST http://160.40.53.126:8080/broker/api/v1/publisher/serviceCreation

http://160.40.53.126:8080/broker/api/v1/publisher/%7bpublisherName%7d/%7bconsumerName%7d
http://160.40.53.126:8080/broker/api/v1/publisher/%7bpublisherName%7d/%7bconsumerName%7d
http://160.40.53.126:8080/broker/api/v1/publisher/componentA/componentB
http://160.40.53.126:8080/broker/api/v1/publisher/componentA/componentB
http://160.40.53.126:8080/broker/api/v1/publisher/componentA
http://160.40.53.126:8080/broker/api/v1/consumer/%7bcomponentName%7d
http://160.40.53.126:8080/broker/api/v1/consumer/%7bcomponentName%7d
http://160.40.53.126:8080/broker/api/v1/consumer/componentA

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 122

 Confidentiality: Public

Body request data format example:

{

 "serviceId ": " ff098b1b-e218-410d-a0a1-a486fdda3bc6",

 "serviceName ": " Test Service 1",

 "description ": " An example test service ",

 "owner": "7ac10294-159e-4153-8da2-ec5e5d2f2e58"

 }

Consuming messages example:

The Service Discovery component can perform the following HTTP call in order to retrieve an incoming

message from its queue:

Response body data format example:

{

 "serviceId ": " ff098b1b-e218-410d-a0a1-a486fdda3bc6",

 "serviceName ": " Test Service 1",

 "description ": " An example test service ",

 "date ": "2021-06-08 12:42:18",

 "owner": "7ac10294-159e-4153-8da2-ec5e5d2f2e58"

 }

4.7 User Access Management

User Access Management (UAM), also known as identity and access management (IAM), is the act of

defining and managing the roles and access privileges of individual network entities (users and devices) to

a variety of cloud and on-premises applications. Users include customers, partners and employees, while

devices include computers, smartphones, routers, servers, controllers and sensors. The core objective of an

IAM solution is to assign one digital identity to each individual or a device. Once that digital identity has

been established, the IAM solution maintains, modifies, and monitors access levels and privileges through

each user’s or device’s access life cycle.

In today’s complex compute environments, IT departments are under increased regulatory and

organizational pressure to protect access to corporate resources. As a result, they can no longer rely on

manual and error-prone processes to assign and track user privileges. IAM automates these tasks

and provides a seamless way to manage user identities and access all in one place. The core responsibilities

of an IAM system are:

▪ Verification and authentication of users based on their roles and contextual information such as

geography, time of day, or (trusted) networks

▪ Capturing and recording of user login events

▪ Managing and provision of visibility of the business’s user identity database

▪ Managing the assignment and removal of users’ access privileges

▪ Allowing system administrators to manage and restrict user access and monitor changes in user

privileges

GET http://160.40.53.126:8080/broker/api/consumer/serviceDiscovery

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 123

 Confidentiality: Public

The adoption of an Identity Management system provides a wide range of benefits to organizations, such

as:

▪ Secure access: access privileges are granted according to the selected policy, and all individuals

and services are properly authenticated, authorized and audited

▪ Reduced risk: companies have greater control of user access, which reduces the risk of internal

and external data breaches

▪ Ease of use: the use of an IAM framework can make it easier to enforce policies around

user authentication, validation and privileges

▪ Reduced IT costs: businesses can operate more efficiently by decreasing the effort, time and

money that would be required to manually manage access to their networks

▪ Meeting compliance: an effective IAM system facilitates businesses to confirm compliance with

critical privacy regulations such as HIPAA, the Sarbanes-Oxley Act and GDPR

4.7.1 Keycloak

Keycloak [100] is an identity and access management solution (IAM) [101] [102] for web apps and

RESTful web services. It has been developed by RedHat, one of the world’s biggest Open Source software

producers, and comprises all the important features an IAM solution needs to provide [103]. The goal of

Keycloak is to facilitate application developers to secure the apps and services they have deployed in their

organization by providing out of the box easily tailorable security features that developers normally have

to implement on their own in order to meet individual requirements of their organization. In that context,

Keycloak offers central management of admins, users, user rights, system access processes, password rules

and passwords.

Figure 70 below provides a high-level description of how Keycloak works [104]:

Figure 70: Keycloak Sequence Diagram

Browser applications redirect a user’s browser from the application to the Keycloak authentication server

where they enter their credentials. This redirection is important because users are completely isolated from

applications and applications never see a user’s credentials. Keycloak checks the validity of the provided

user credentials and decides whether or not the user will be granted access to the requested protected URL(s)

of the application.

The key benefits offered by Keycloak are the following [105] [106]:

▪ Multiple Protocols Support: Keycloak supports three different authentication protocols, namely

OpenID Connect, OAuth 2.0 and SAML 2.0

▪ Authorization & Authentication: Keycloak supports system logon with one account or one single

virtual identity

▪ Identity Brokering: Keycloak can serve as a proxy between the users of an application and

external identity providers.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 124

 Confidentiality: Public

▪ SSO: Keycloak provides full support for Single Sign-On and Single Sign-Out

▪ Scalability: Keycloak is capable of managing a nearly limitless number of accounts, adaptable

to different needs

▪ Social Identity Providers: Keycloak allows the use of Social Identity Providers, providing built-

in support for Google, Facebook, Twitter, Stack Overflow and more

▪ Performance: Keycloak is powerful, future-proof and suitable for enterprise applications

▪ Active Community: there is an active community that provides continuous and customer-

oriented development and keeps Keycloak up-to-date with regular releases

▪ Open Source: Keycloak is completely open source and free in contrast with most of the tools that

offer similar features such as Okta and AuthO

Additionally, Keycloak provides the Admin Console, an extensive and friendly interface which is

accessible via a web browser, for administrators and developers to configure and manage Keycloak [107]

[108]. There are three main entities in Keycloak:

1. realm: A realm secures and manages security metadata for a set of users, applications, and

registered auth clients. Realms are fully isolated from one another and each realm has its own

configuration and its own set of applications and users.

2. client: Clients are entities that can request authentication of a user within a realm. Every application

that interacts with Keycloak is considered to be a client.

3. role: Roles identify a type or category of user. Keycloak often assigns access and permissions to

specific roles rather than individual users for a fine-grained access control

In order to use the admin console, a system administrator will need to create an initial admin account first.

This account will allow the admin to log into the master realm’s administration console where he/she can

start creating realms as well as users and applications for these realms. Figure 71 below depicts an overview

of the master realm, while Figure 72 and Figure 73 show how to create a new realm from the master realm.

Figure 71: Keycloak Master Realm

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 125

 Confidentiality: Public

Figure 72: Creating a new realm (1/2)

Figure 73: Creating a new realm (2/2)

As soon as the realm has been created, users can be added within that realm as shown in Figure 74. The

admin can also define appropriate roles and assign them to the created users as it can be seen in Figure 75.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 126

 Confidentiality: Public

Figure 74: New user

Figure 75: Role Assignment

Figure 76 presents how a sample application (client) that needs to be secured with Keycloak can be

configured within a realm.

Figure 76: Client application configuration

Apart from the Admin Web Console, Keycloak also offers the Admin REST API which is capable of

performing all the operating tasks that are necessary to manage the Keycloak system. In fact, the web

console uses this REST API under the hood [109], therefore all the functionality and features of the web

console are provided by the Keycloak Admin REST API as well. More information about this REST API

can be found in https://www.keycloak.org/docs-api/14.0/rest-api/index.html.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 127

 Confidentiality: Public

4.7.2 Keyclock and Eclipse Che

Eclipse Che utilizes by default the multiuser mode which uses Keycloak to authenticate users. Therefore,

Eclipse Che can take advantage of all the capabilities Keycloak may offer in creating, importing, managing,

deleting and authenticating users. By default, an Eclipse Che installation includes the deployment of a

dedicated Keycloak instance. However, Che is capable of using an external Keycloak instance as well,

which can be very useful in cases where there is an existing Keycloak instance with already-defined users,

for example, a company-wide Keycloak server used by several applications. In that case, a realm containing

the users intended to connect to Che should be defined in the external Keycloak server, as shown in Figure

77. In that realm, an OpenID Connect client needs to be defined that Che will use to authenticate the users.

The Client Protocol must be set to openid-connect and the Access Type must be public, as it can be seen in

Figure 78. Furthermore, the URIs that contain the base URL of the Che server must be defined.

Figure 77: Configuring Eclipse Che to work with an existing Keycloak server (1/2)

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 128

 Confidentiality: Public

Figure 78: Configuring Eclipse Che to work with an existing Keycloak server (2/2)

4.8 Deployment [WT]

4.8.1 Design Approach

Deployment and deployment monitoring service. This is a very first approach where we will

only consider: GitLab + “SmartCLIDE Interpreter + Jenkins + Docker + Kubernetes/AWS

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 129

 Confidentiality: Public

Figure 79: Set of Applications Diagram. Workflow

4.8.2 Third-party services

The deployment and deployment monitoring microservice makes use of the following elements to perform

the deployment and monitoring tasks, from the gitlab-ci pipeline file until the deployment is monitored as

it runs on the kubernetes cluster, be it on any cloud infrastructure.

4.8.2.1 Kairos interpreter

The Kairos interpreter is a microservice developed by kairos whose main function is, from a

gitlab-ci file, to obtain a jenkins pipeline file.

4.8.2.2 Jenkins

Jenkins was chosen as the CD/CI engine since it is the main target of the Kairos interpreter as a CD/CI

engine. In addition, since it is open source software, it can be deployed on the developer's machine in the

development and testing tasks of the deployment microservice. As more and more organizations are using

Docker to unify their build and test environments for their applications, Jenkins allows us to interact with

Docker through default Docker support in its pipelines. On the other hand, Jenkins pipelines allow images

to be built from the Dockerfile found in the main folder of the software project.

4.8.2.3 Docker registry

Docker Registry is an application that manages storing and delivering Docker container images. Registries

centralize container images and reduce build times for developers. Docker images guarantee the same

runtime environment through virtualization, but building an image can involve a significant time

investment. Docker registry will be used as a central repository of images once they are built. It will be

from this service from where the Kubernetes deployment will obtain the image of the containers to be

deployed in the cluster.

4.8.2.4 Kubernetes cluster

Because Kubernetes is an open-source project, you can use it to run containerized applications in any

environment without having to change your operational tools. A large community of volunteers maintains

and improves Kubernetes software. In addition, many other vendors and open-source projects create and

maintain Kubernetes-compatible software that you can use to enhance and extend your application

infrastructure. The scope of the service also includes the use case of obtaining information about the status

of the service while it is running in Kubernetes. Some of this data can be RAM memory in use, network

information or CPU usage. It is assumed that a Kubernetes cluster is running on any of the clouds, such as

AWS, Azure or Google Cloud Platform.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 130

 Confidentiality: Public

4.8.3 Workflow

4.8.3.1 Gitlab CI/CD pipeline to Jenkins job

For the early prototyping, it is assumed that the build stage and the push stage are done using docker, so

the resulting jenkins pipeline should also be of these characteristics. It is also assumed that the software

project to be deployed contains in its root directory a Dockerfile to build the docker image that will later be

built with jenkins.

4.8.3.2 Using Jenkins to publish docker images to a docker registry server

With the Jenkins pipeline obtained from the previous step, a jenkins job is launched that builds the docker

container. If the job is successful, the resulting image is uploaded to the docker registry server. This way

the built image will be available to be consumed by the kubernetes cluster.

4.8.3.3 Deploying applications on kubernetes from docker images

Once the jenkins job has successfully completed and the image has been uploaded to the docker image

registry, the next step is to deploy the built image(s) to the Jenkins cluster.

4.8.3.4 Kubernetes monitoring service

The scope of the deployment service also includes the use case of obtaining information about the status of

the service while it is running in Kubernetes. Some of this data can be RAM memory in use, network

information or CPU usage.

Figure 2: Deployment Component Diagram

4.8.4 Docker-based deployment

Services can be deployed as isolated instances using a well-known technology such as dockers. Dockers

is an open-source project that automates the deployment of software applications inside containers

by providing an additional layer of abstraction and automation of OS-level virtualization on

Linux. Opposite to the Virtual Machine paradigm, containerized applications do execute over the host

operating system, just using a docker layer between.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 131

 Confidentiality: Public

Figure 3: Docker based Deployment Architecture

4.8.4.1 Communication with Cloud Providers

Application integration on AWS is a set of services that enable communication between decoupled

components in microservices, distributed systems, and serverless applications. Decoupling applications at

any scale can reduce the impact of changes, making updates easier and new deployments and new

features released faster.

4.9 SmartCLIDE CI/CD

4.9.1 Design Approach

The proposed basis for the SmartCLIDE CI/CD infrastructure is the built-in CI/CD capability provided

natively by the chosen version control system, GitLab. For the Continuous Integration (CI) component of

this, there are several areas to consider:

▪ What elements of the system are subject to CI

▪ How CI integrates with the development strategy

When considered at the level of individual services, CI is a requirement for those services which are defined

within the SmartCLIDE source code repository, i.e., services which are developed from scratch, modified

from a template or generated as source code with SmartCLIDE tooling. CI on GitLab is generally

configured by means of a configuration file, namely the gitlab-ci.yml file, at the root of the corresponding

source repository. Within this configuration file, the various stages of the build pipeline are defined. A build

pipeline might typically involve the following stages:

▪ Build – compile the code in the repository

▪ Unit test – run unit tests

▪ Package – package the service into a deployable unit

▪ Integration test – run integration tests

▪ Deploy – deploy to an environment

Note that the stages of the build pipeline are flexible and may be defined according to the needs of the

project and the technology used. For instance, pipeline stages for a service written in Java would invoke

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 132

 Confidentiality: Public

Maven39 for compilation and unit testing, whereas a service written in Ruby40 would require invocation of

the Rake41 build tool. In the case of SmartCLIDE, the end-result of a successful build is a Docker image

definition, ready to be used in the BPMN-defined workflows.

For Continuous Delivery (CD) at the workflow definition level, the flexibility afforded by the GitLab CD

functionality, with built-in support for Docker and Kubernetes deployments and the ability to run arbitrary

scripts, may serve as the basis for deployment of the composed service, as described in Section 2.4 of this

document.

Figure 80: CI Server & Testing and QA Component Diagram

Table 48: CI Server & Testing

Name CI Server & testing Component

Functionality
Perform automated build, test, and packaging of services from source code.

Relevant Use Cases (D1.3)
Provide basis for Services Deployment component

Functional Requirements
 P69, P70, P72

39 https://maven.apache.org/
40 https://www.ruby-lang.org/en/
41 https://github.com/ruby/rake

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 133

 Confidentiality: Public

4.9.2 Interface Specification

Table 49: CI Server & Testing and QA Component Interface Specification

No Interface

(/API)

Description Type

Provided Required

1
 GitLab REST

API

 GitLab’s REST API provides a rich set of

capabilities for controlling GitLab. Full

documentation can be found at

https://docs.gitlab.com/ee/api/api_resources.html

*

2 Git interface

 The standard Git interface, over ssh or https

connection, accessible with git client or git library

built into SmartCLIDE components. The

configuration file, .gitlab-ci.yml, is included in

the directory root of a project to provide

configuration of the CI/CD pipeline.

 *

https://docs.gitlab.com/ee/api/api_resources.html

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 134

 Confidentiality: Public

5 SmartCLIDE Testing Approach

5.1 Test levels

Testing and verification in SmartCLIDE will be conducted in multiple levels namely unit testing,

integration testing, API testing, performance testing, usability testing and system testing.

In the unit testing level [110], the individual components of the application are tested. The aim is to ensure

that each component works as expected. Unit testing requires a detailed knowledge of the source code and

are executed during the development (coding phase) of an application by the developers. Unit tests isolate

a section of code and verify its correctness. This section of code is called unit and can be an individual

method, function, procedure, object or module. Unit tests are in general quite cheap to automate, and errors

found at this level can be fixed quickly. Moreover, unit testing results in more readable and less complex

source code and simplifies the integration of a unit into an application.

Integration testing [111] is a type of testing meant to check interconnection and interoperability between

the different software components, ensuring that the integrated units operate well together. Integration tests

normally and logically follow unit tests and focus on exposing defects at the time of interaction between

the different software modules when they are integrated and data/information flow among them. Integration

testing can be very useful especially when requirements can be changed or enhanced at the time of module

development. In such cases, these new requirements may not be tested appropriately at the unit testing level

and create problems in the communication between the system components. Integration tests can prevent

such flaws and verify that the different modules work properly as a unit. In the context of SmartCLIDE,

integration testing will play a vital role in the software development process since there are many different

components that need to communicate with each other.

Application Programming Interface (API) testing [112] is part of the integration testing and is performed

in the business layer where all the business logic processing is carried out. Each SmartCLIDE component

will have its own API to interact and communicate with the other components. This API will define what

requests can be made, which data formats can be used, what kind of responses are expected etc. for each

component. API testing will ensure that all the APIs meet the required expectations regarding functionality,

performance, reliability and security. An API that is not tested properly may cause problems not only to the

primary application that exposes that API but also to other applications it integrates with.

Smoke tests [113] will run right after a new software build is deployed to assure that the core features of

the system are still working properly. Smoke tests run quickly, are relatively easy to perform and help

identifying flaws in early stages. Furthermore, smoke tests can save test effort and time by detecting early

defects in a software product that would make the use of further and more expensive tests a waste of time

and resources.

Performance tests [114] will be conducted to check how the system behaves under different workloads.

This testing method is mostly used to identify performance issues and bottlenecks and determines the

system performance in terms of speed, stability, reliability and scalability. Performance testing can be either

quantitative or qualitative and can be divided into different sub-types such as Load testing and Stress testing.

Load testing is carried out to check how an application behaves under anticipated user loads and is usually

performed with the help of automated testing tools that simulate real-world usage. It intends to detect errors

that can occur under different load variations and provides an estimation of the maximum capacity of the

system before performance is affected, thus providing valuable insight into performance bottlenecks which

can improve the scalability of the system. Stress testing is a software testing technique that verifies the

stability and reliability of the system. It emphasizes on robustness and checks the system behaviour under

abnormal conditions, e.g., by applying loads beyond the actual load limit or taking away some of the

resources, to identify the breaking point. Stress testing ensures that the system can operate in an appropriate

way in abnormal conditions and recover quickly after a failure.

Usability testing [115] refers to evaluating a product or service by testing it with representative users. It

usually involves observing users as they attempt to complete typical tasks and mainly focuses on the

effectiveness, efficiency, accuracy and user friendliness of the system. Through usability testing, the design

and development teams can evaluate how satisfied the participants are with the system and identify changes

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 135

 Confidentiality: Public

required to improve user performance and satisfaction. Usability tests are often conducted repeatedly, from

early development until a product’s release.

The testing of the overall SmartCLIDE platform in the acceptance testing level will be performed after the

completion of the overall system integration, according to the defined acceptance level test cases.

5.2 Testing tools and frameworks

In order to technically design and implement the several test cases, the SmartCLIDE development teams

utilized a set of tools and frameworks. One popular testing tool used by the development teams is Junit

[116]. Junit is one of the most popular unit-testing frameworks in the Java ecosystem. It is open source and

helps Java developers to write and run repeatable tests. JUnit offers several functionalities for writing and

executing high-quality unit tests like annotations to identify test methods, assertions for testing expected

results and test runners for running tests. JUnit is supported by popular IDEs and build tools and it is

elegantly simple, enabling developers to write codes faster. Another testing tool that is often utilized in

conjunction with Junit is the Maven Surefire Plugin [117] which is used during the test phase of the build

lifecycle to execute the unit tests of an application. This plugin generates test reports in two different file

formats, plain text files (*.txt) and XML files (*.xml).

An additional tool that was utilized by the SmartCLIDE development teams is PlUnit [118]. It is a Prolog

unit-test framework initially developed for SWI-Prolog. Tests are written in pure Prolog and can be

embedded inside a normal source module or be placed in a separate test-file that loads the files to be tested.

5.3 Testing Documentation Template

In the context of the SmartCLIDE verification and testing strategy, a common format has been defined for

reporting the several test cases of the SmartCLIDE components. This format is entitled SmartCLIDE Test

Case Template and the figure below presents a test case example reported with this template.

Figure 81: Example test case reported using the SmartCLIDE Test Case Template

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 136

 Confidentiality: Public

As shown in the figure 1 above, the SmartCLIDE Test Case Template includes the following fields:

▪ Test Case ID: The ID of the test

▪ Test Priority: The priority of the test

▪ Module Name: The name of the module that is being tested

▪ Test Title: The title of the test

▪ Description: A short textual description of the test

▪ Test Designed By: The name of the tester/developer who created the test

▪ Test Designed Date: The date the test was created

▪ Test Executed By: The name of the tester/developer who executed the test

▪ Test execution Date: The date the test was executed

▪ Test Case: The test result

▪ Prerequisites: The software/hardware prerequisites for the correct execution of the test

▪ Step #: The serial number of the step

▪ Test Step: A short textual description of the test step

▪ Test Data: The data required for the correct execution of the test

▪ Expected Result: The expected result from the execution of the test step

▪ Actual Result: The actual result obtained from the execution of the test step

▪ Status: The test step status

▪ Notes: Any additional notes regarding the execution of test steps

▪ Post-conditions: The changes to the system after the completion of the Test Case

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 137

 Confidentiality: Public

6 Conclusions

This document presented early SmartCLIDE frontend and backend design approach. The adopted early

design approach followed the conceptualization and architecture design outcomes conducted in WP1 and

documented in D1.2, D1.3, D1.4, and D1.5. The work was organized into two parallel branches: (i) user

interface design, and (ii) elaboration of backend and frontend components.

An end-to-end demonstration use case was presented to explain how the various SmartCLIDE

functionalities can be accessed from the envisioned SmartCLIDE IDE. Besides, the overall UI design

approach and key implementation decisions are discussed. This deliverable formalizes the early design of

SmartCLIDE components, focusing on specification of the core frontend (i.e., Run-time Monitoring and

Simulation Console and Smart Assistant), and backend components (i.e., User Access & Management,

Discovery of Services and Resources, Service Creation, Composition and Testing, Discovery of Services

and Resources, Run-time Monitoring and Verification, Security, MOM, Deployment, and CI/CD

component). All component diagrams are specified using UML 2.5 Component Diagram notation and

clearly indicate provided and required APIs.

The next update of this document is planned for the M30. Hence, each technical partner will be responsible

for an additional in more-detail description of the components. We expect that the proposed specification

approach will provide efficient support for the ongoing development and integration effort. However, minor

refinements might be necessary to properly document and formalized interface specifications (e.g.,

elaborated API documentation template). Finally, in the next version of this deliverable, we will focus on

the detailed specification and the System Deployment view update.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 138

 Confidentiality: Public

7 Annex A: Wireframes of the IDE

The first page that the user sees when they enter the IDE is their homepage (Figure 82). It consists of a

dashboard that presents a summary of information regarding the state of activities related with services,

deployments, or other user-related processes monitored by the IDE. Additionally, the context bar provides

direct access to the main pages of the workflows, services, or deployments. This page can be accessed by

clicking the logo on the upper-left corner of the page.

Figure 82: The main page of the SmartCLIDE platform

The dashboard consists of a customisable area with resizable cards that provide an overview of the user’s

work. The plus button on the upper-right corner redirects the developer to the configuration page Figure 83

where a new card can be added to the dashboard. Dragging a card and dropping it in the bin on the lower-

right corner removes it from the dashboard.

Figure 83: Settings Page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 139

 Confidentiality: Public

The page header contains two icons, on the upper-right corner: (i) “Settings” and (ii) “User”. When the

settings icon is clicked, the user is presented IDE settings-related options, in the context bar (Figure 83):

▪ Appearance: Allows the user to configure SmartCLIDE IDE’s graphical theme, i.e., the graphical

element’s colour and shape.

▪ Help: Contains the documentation of the IDE and a FAQ section.

▪ Logs: Shows the logs associated to the running of the tools in the SmartCLIDE ecosystem.

▪ Statistics: Provides resource usage statistics of the SmartCLIDE IDE.

When adding a card, the user is prompted to insert its category (Workflows, Services, Deployments and

Sources), which defines the set of columns that can be viewed. Thus, the user must order the columns

according to their priority because, if the card is set to a small size, not all columns will be displayed.

Figure 84: The content configuration page of the dashboard

On the other hand, clicking the avatar icon makes the context bar display the account-related options:

▪ Profile: page where the following profile settings can be changed (Figure 85):

▪ Username: the name by which the user is known within the SmartCLIDE IDE

▪ Email: the email address of the user

▪ Password: the password used to log into the IDE

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 140

 Confidentiality: Public

Figure 85: The user profile page

▪ Team: Within the SmartCLIDE IDE, a team is a group of users that have access to the same projects,

although with different permission levels. To become part of a team, the username inserted by the

team owner must exist. In the page represented in Figure 86, the user can manage its team members

and access the following team-related information:

▪ Username: the name by which the user is known within the SmartCLIDE IDE

▪ Access Granted: when was the user granted access to the team and by who

▪ Role: the role of the user within the team

▪ Expiration: when will the user stop being part of the team

Figure 86: The team configuration page

▪ Sources: Contains an overview of the sources where the IDE looks for services to be used and allows

their management, which includes searching for, adding, editing, removing, and checking their status.

According to Figure 87, this page displays the following information:

▪ Name: name of the source

▪ URL: web address of the source

▪ Description: short description of the source

▪ Services: number of services contained within the source

▪ Ontology: indicates whether an ontology is available in the source

▪ State: indicates whether the IDE has finished indexing the services from the source

▪ Created At: when the source was added to SmartCLIDE

This functionality supports the following use cases [119]:

▪ UC-0004 Discover Resources and Services

▪ UC-0028 Indexation and Classification of services and resources from an external repository

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 141

 Confidentiality: Public

Figure 87: Sources for services

1 Credentials: Allows the user to manage their credentials for accessing development support tools like

GitLab and Jenkins42, which includes adding, editing, and removing credentials. Figure 88 shows the

page that allows the user to manage such credentials and provides the following information:

▪ Platform: the platform where the credentials are to be used

▪ Username: the username to log in the platform

▪ Password: the password to log in the platform

▪ Added: date when the credentials were registered in the SmartCLIDE IDE

This functionality supports the use cases below [119]:

▪ UC-0001 Creation of a service from a template

▪ UC-0002 Create services with data abstraction levels

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0006 A non-expert user creates a new service with assistance

▪ UC-0010 Deploy a service from the CLI within SmartCLIDE

▪ UC-0011 Create a system using low-code programming

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0015 Accessing Git repositories

▪ UC-0016 Change something on SmartCLIDE itself

42 https://jenkins.io

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 142

 Confidentiality: Public

Figure 88: User credentials management page

A.1 Search for, add, edit, or remove workflows [Workflow Functionality]

Figure 89 shows the main page for workflows. Through the context bar, the user can choose to display one

out of three groups of workflows: (i) “My workflows”, (ii) “Shared with me”, and (iii) “Public Workflows”.

These groups allow the developer to filter the workflows being shown in the table (i.e., only workflows

developed by the logged in user, workflows that were shared with the user or public workflows developed

within the SmartCLIDE platform). The results can also be filtered by any keyword (name or description)

or value (update date) that the user inserts into the search bar. In addition, the sorting order of the results

may be swapped by clicking the titles of the columns.

This page is the starting point for creating, editing, or removing workflows, by clicking the plus, pencil or

bin symbols, respectively.

Figure 89: The main page of the workflows

This functionality supports the use cases below [119]:

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 143

 Confidentiality: Public

▪ UC-0007 Decompose complex systems into smaller pieces

▪ UC-0011 Create a system using low-code programming

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0014 Visualizing services and data flows

A.2 Collect or change the details of a workflow [Workflow Functionality]

When the user decides to either create or edit a workflow, the page from Figure 90 shows up (blank, if

creating, or filled in, if editing a workflow).

Figure 90: Workflow configuration page

Here, the user inserts the information of the workflow and chooses a diagram template to start designing

from. The repository where the workflow will be stored is only created after the “Next” button is pressed.

In case the user wants to abort the workflow creation, the navigation bar can be used to go to another page.

This functionality supports the use cases below [119]:

▪ UC-0007 Decompose complex systems into smaller pieces

▪ UC-0011 Create a system using low-code programming

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0014 Visualizing services and data flows

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 144

 Confidentiality: Public

A.3 Draw or edit workflows [Workflow Functionality]

In order to design a workflow, a diagram editor is required. In the beginning, the behaviour of the workflow

must be specified, in the “Properties” tab (Figure 91). For this purpose, a diagram editor will be extended

to provide the right-panel properties’ window, which shows different options depending on the type of

element in focus (“Workflow” if nothing is selected or “Task” if a node is selected).

Figure 91: An instance of the diagram editor

After that, the elements are dragged onto the draw area and the fields from the “Properties” and

“Functionality” tabs of each node/task must be completed (Figure 92 and Figure 93). Throughout this

process, the Smart Assistant aids the developer by suggesting nodes as the workflow is being designed.

Figure 92: Task Properties within the diagram editor

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 145

 Confidentiality: Public

Figure 93: Task Functionality within the diagram editor

At any time, the user can change to the “Code Editor” tab, inspect, and manually edit the code being

generated by SmartCLIDE (Figure 94), using an instance of the Eclipse Theia IDE43.

Figure 94: An instance of the Theia code editor

Notice that, once the user arrives at the development stage of a project, the context bar provides access to

a set of functionalities grouped in accordance with the stages of the software development life cycle,

namely:

▪ New Test: where the user can specify a new test for the workflow

▪ Define Pipelines: allows the developer to set a pipeline that automates the development process

▪ Check Pipelines: provides the user with the state of their pipelines

▪ Check Security Analysis: displays the results of the security analysis on the workflow

▪ New Deployment: triggers the creation of a new deployment of the workflow

▪ Check Deployments: shows the list of deployments of the same workflow to the user

▪ Cost Calculator: gives access to a comparison of costs between different Cloud providers

43 https://theia-ide.org

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 146

 Confidentiality: Public

Additionally, a “Quick Access” area is provided, where the user can add custom shortcuts to other

functionalities (e.g., Git management), as shown below.

Figure 95: Adding a new shortcut to "Quick Access"

Finally, the “Project” category displays an option to edit the settings of the project or to close it. Once any

of these options is clicked, the corresponding window replaces the editor.

Moreover, the title of the window indicates the name of the project as well as its type (workflow, service

or deployment). Finally, the toggle button on the upper-right corner allows the developer to select one of

the views (diagram – only available for workflows – or code – available for every type of project) at any

time.

These functionalities support the use cases below [119]:

▪ UC-0007 Decompose complex systems into smaller pieces

▪ UC-0011 Create a system using low-code programming

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0014 Visualizing services and data flows

▪ UC-0022 Usage of a BPMN editor

A.4 Find a suitable service for a task [Workflow Functionality]

A task can be easily implemented using an existing service. For that, SmartCLIDE provides the Service

Discovery tool (Figure 96) which is accessible through the “Functionality” tab. It receives details of new

registries and analyses them to be able to suggest the most suitable services, which can be deployable

versions, services connected to the web or services in source code.

When using the Service Discovery, the user is asked which task they need a service for, and is given a list

of services that match the meta-data previously inserted in the “Functionality” tab. The developer is shown

some details about the selected service (e.g., URL, license, framework, etc.) that help them making the best

choice. When the “Next” button is pressed, the selected service is bound to the task.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 147

 Confidentiality: Public

Figure 96: Service discovery configuration page

In case this tool cannot find any results, the message from Figure 97 is displayed.

Figure 97: No results found by the service discovery

These functionalities support the use cases below [119]:

▪ UC-0004 Discover resources and services

▪ UC-0007 Decompose complex systems into smaller pieces

▪ UC-0011 Create a system using low-code programming

▪ UC-0012 Creating a complex scenario from templates

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 148

 Confidentiality: Public

A.5 Test the workflow [Workflow Functionality]

When the workflow is completed, the developer is expected to click a blank area in the canvas, go to the

“Integration” tab of the workflow and test it (Figure 98).

Figure 98: Workflow integration in the diagram editor

This functionality supports the following use cases [119]:

▪ UC-0006 A non-expert user creates a new service with assistance

▪ UC-0008 Test services from within SmartCLIDE

A.6 Run a security analysis on the workflow [Workflow Functionality]

SmartCLIDE allows the user to run in the background a security analysis on the workflow, as well as

assessing its vulnerability, namely identify potential security breaches. Such options are available in the

“Constraints” tab of the workflow, according to Figure 99 and Figure 100.

Figure 99: Security analysis page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 149

 Confidentiality: Public

Figure 100: Vulnerability assessment page

This functionality supports the use cases below [119]:

▪ UC-0026 Create secure services with authentication

A.7 Search for, add, edit or remove services [Service Functionality]

Figure 101 portrays the main page of the services. As in the case of the workflows, the user may filter the

services by developer (“My Services”, “Shared with Me” or “Public Services”), in the context bar, or any

keyword (i.e., name, URL, description, or licence) or value (update date) written in the search bar.

Additionally, the sorting order can be changed by clicking the title of the columns. Finally, this page is the

starting point for creating, editing, or removing services as well.

Figure 101: The main page of the services

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 150

 Confidentiality: Public

This functionality supports the use cases below [119]:

▪ UC-0001 Creation of a service from a template

▪ UC-0002 Create services with data abstraction levels

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0004 Discover resources and services

▪ UC-0006 A non-expert user creates a new service with assistance

▪ UC-0008 Test services from within SmartCLIDE

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0015 Accessing Git repositories

▪ UC-0020 Specify the licence of a service

▪ UC-0026 Create secure services with authentication

A.8 Edit the details of a service [Service Functionality]

When the user decides to either create or edit a service, the page presented in Figure 102 shows up (blank,

if creating, or filled in, if editing). In this page the user can insert or edit the main details about the service:

▪ Name: the name of the service

▪ Description: a brief description of the service

▪ License: the license used to protect the service distribution

▪ Framework: the framework used to develop the service

Figure 102: The main configuration page of a service

After pressing “Next”, a GitLab repository and a Jenkins continuous integration (CI) pipeline are

configured. These functionalities support [119]:

▪ UC-0001 Creation of a service from a template

▪ UC-0002 Create services with data abstraction levels

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0004 Discover resources and services

▪ UC-0006 A non-expert user creates a new service with assistance

▪ UC-0008 Test services from within SmartCLIDE

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0015 Accessing Git repositories

▪ UC-0020 Specify the licence of a service

▪ UC-0026 Create secure services with authentication

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 151

 Confidentiality: Public

A.9 Smart Assistant for code edition [Service Functionality]

SmartCLIDE also provides an Eclipse Theia44 instance, as source code editor. Throughout the

implementation stage, the Smart Assistant helps the developer with:

▪ Code autocompletion (Figure 103): the user gets suggestions of variables, function names, etc. as

they type.

▪ Live template recommendations (Figure 104): the syntax of functions, assignments, etc. is

automatically completed, preventing the user from having to type every single character.

▪ Comments generation (Figure 105): right-clicking on the code provides an option to generate

comments on the written code, using the correct syntax for the programming language in use.

Figure 103: Smart Assistant services: Code autocompletion

Figure 104: Smart Assistant services: Live template recommendation

44 https://theia-ide.org

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 152

 Confidentiality: Public

Figure 105: Smart Assistant services: Comments generation

These functionalities support [119]:

▪ UC-0001 Creation of a service from a template

▪ UC-0002 Create services with data abstraction levels

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0004 Discover resources and services

▪ UC-0006 A non-expert user creates a new service with assistance

▪ UC-0008 Test services from within SmartCLIDE

▪ UC-0012 Creating a complex scenario from templates

▪ UC-0015 Accessing Git repositories

▪ UC-0020 Specify the licence of a service

▪ UC-0026 Create secure services with authentication

A.10 Search for, add, edit or remove deployments [Deployment Functionality]

Figure 106 illustrates the main page of the deployment. Similarly, the context bar gives access to both the

user’s own deployments and shared with them, including the following details:

▪ Name: name of the deployment

▪ Workflow/Service: name of the deployed workflow or service

▪ Version: version of the deployed workflow or service

▪ State: state of the deployment (not configured, ready, running, stopped)

▪ Updated At: date when the deployment was last edited

The searching mechanisms work in the same way as in the previous cases. In addition, through this page

the users can create new and edit or remove past deployments.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 153

 Confidentiality: Public

Figure 106: The main page of the deployments

These functionalities support [119]:

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0005 Search for deployed services

▪ UC-0009 Conduct a cost analysis

▪ UC-0010 Deploy a service from the CLI within SmartCLIDE

A.11 Edit the details of a deployment [Deployment Functionality]

When the user decides to either create or edit a workflow, the page presented in Figure 107 shows up (blank,

if creating, or filled in, if editing). In this page the user can insert or edit the main details about the

deployment:

▪ Name: the name of the service

▪ Workflow/Service: indicates what is going to be deployed

▪ Version: the version of the workflow or service to be deployed

Figure 107: The main configuration page of a deployment

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 154

 Confidentiality: Public

 This functionality supports [119]:

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0005 Search for deployed services

▪ UC-0009 Conduct a cost analysis

▪ UC-0010 Deploy a service from the CLI within SmartCLIDE

A.12 Resource configuration and optimisation [Deployment Functionality]

To configure a deployment, the user must click the pencil symbol, by which time they are redirected to the

deployment configuration page (Figure 108), where they insert the computing resources required for the

deployment and, after a while, fine-tune them according to the IDE suggestions (Figure 109). In this page,

the following columns are presented:

▪ Resource: the type of resource needed for the deployment

▪ Details: the resource specifications

▪ Usage (%): usage percentage, that indicates how optimised the configuration of that resource is.

▪ Suggestions: recommendations on how to optimise the configuration

Figure 108: The deployment configuration page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 155

 Confidentiality: Public

Figure 109: The deployment configuration suggestions

As in the case of the workflows and services, when configuring a deployment, a context bar is displayed

on the left-hand side of the page. The options it provides, however, are only related with the deployment or

monitoring stages, namely:

▪ Edit Information: redirects the user to the page with the information about the deployment

▪ Configure Deployment: allows choosing the resources needed for the deployment

▪ Cost Calculator: presents a cost comparison between different Cloud providers

▪ Deploy: where the developer can deploy the workflow/service

▪ Select Metrics: allows the user to choose which parameters must be monitored during runtime

▪ Visualise Results: shows the values for the previously selected metrics

These functionalities support [119]:

▪ UC-0003 Create and deploy a service from the IDE

▪ UC-0005 Search for deployed services

▪ UC-0009 Conduct a cost analysis

▪ UC-0010 Deploy a service from the CLI within SmartCLIDE

A.13 Run a cost analysis [Deployment Functionality]

Before deploying the workflow/service, the user can see a cost comparison that assists in choosing the best

cloud provider (Figure 110Figure 110) and then, go back to the deployment configuration page. It is worth

mentioning that the cost simulation service will only be able to provide accurate values at the component

level.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 156

 Confidentiality: Public

Figure 110: Main page of the cost comparison service

This functionality supports [119]:

▪ UC-0009 Conduct a cost analysis

A.14 Choose the metrics to be monitored [Deployment Functionality]

The user can choose the metrics to be automatically monitored during runtime by clicking “Select Metrics”

in the deployment configuration page, or through the context bar. By doing so, the user is redirected to the

runtime metrics selection page presented in Figure 111. There, the developer chooses as many resource

metrics as they want to monitor, indicating:

▪ Resource: one resource from the set inserted in the deployment configuration

▪ Metric: the parameter to be monitored from the indicated resource

▪ Graph: the type of graphical representation for the information

After deploying the workflow/service, the user is redirected to the main page of the deployments.

Figure 111: Runtime metrics selection page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 157

 Confidentiality: Public

This functionality supports [119]:

▪ UC-0025 Monitor and verify services

A.15 Monitor the metrics selected for a deployment [Deployment Functionality]

The developer clicks the bars symbol in the main page of deployments and monitors the selected metrics,

as presented in Figure 112. The displayed data is collected by the Runtime Monitoring & Verification and

the Context Handling components.

Figure 112: Runtime metrics monitoring and visualization page

This functionality supports [119]:

▪ UC-0025 Monitor and verify services

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 158

 Confidentiality: Public

8 Annex B: End-to-End Scenario Use Case

With the aim of showing how the tools and functionalities presented in the previous section can be used

within the same scenario, an 18-steps end-to-end demonstration Use Case was designed, including as many

SmartCLIDE components as possible.

Table 50: End-to-end demonstration Use Case

Step Description Example

1
The user is at the main page of the workflows and

decides to create a new one.

The main page of the workflows

2

The user is prompted to insert the details of the

workflow (e.g., name, description, etc.) and to

choose a workflow template (if any).

Workflow configuration page

3
In the diagram editor, the user designs the

workflow (assisted by the Smart Assistant).

An instance of the diagram editor

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 159

 Confidentiality: Public

Step Description Example

4
For each node, the user must fill in the details

from the tabs on the right-panel.

Task Properties within the diagram

editor

Task Functionality within the diagram

editor

5

In order to fully describe the behaviour of each

node, a service may be bound to a task. For that,

the user can use the Service Discovery tool to find

the most suitable service.

Service discovery configuration page

6

In case the Service Discovery tool fails to find an

appropriate service, the user must develop a new

one.

No results found by the service

discovery

7
The developer is thus directed to the main page of

the services and clicks the plus button.

The main page of the services

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 160

 Confidentiality: Public

Step Description Example

8

The user is prompted to insert the details of the

service. When the form is completed,

SmartCLIDE creates a GitLab repository to host

the source code and a Jenkins CI pipeline to

automate the different stages of the development.

The main configuration page of a

service

9

An Eclipse Theia instance is launched, where the

user develops the source code of the service

(either from scratch or from a template, generated

by the Smart Assistant). In addition, the Smart

Assistant provides code autocompletion, live

template recommendations (including

suggestions of arguments) and comments

generation. The service can then be assigned to

the task, back in the diagram editor.

Smart Assistant services: Code

autocompletion

Smart Assistant services: Live template

recommendation

Smart Assistant services: Comments

generation

10

When the workflow is complete, it is tested

through the “Integration” tab in the diagram

editor.

Workflow integration in the diagram

editor

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 161

 Confidentiality: Public

Step Description Example

11

Additionally, a security analysis and a

vulnerability assessment of the workflow can be

executed, through the “Constraints” tab.

Security analysis page

Vulnerability assessment page

12

Once the workflow is ready for deployment, the

user goes to the main page of the deployments

and clicks the plus button.

The main page of the deployments

13

The user is prompted to insert the details of the

deployment (e.g., name, workflow/service to be

deployed, version of the workflow/service to be

deployed, etc.).

The main configuration page of a

deployment

14

The user clicks the pencil button and starts

configuring the deployment by choosing the list

of resources and corresponding specifications.

The deployment configuration page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 162

 Confidentiality: Public

Step Description Example

15
The user goes to the cost analysis page and selects

the most suitable cloud provider.

Main page of the cost comparison

service

16

Meanwhile, the Smart Assistant’s suggestions on

how to optimise the resources configurations

become available and the user can edit them.

The deployment configuration

suggestions

17
The user chooses the runtime metrics to be

collected and deploys the workflow.

Runtime metrics selection page

18

The user can monitor the chosen metrics by

clicking the bar charts symbol in the main page of

the deployments.

Runtime metrics monitoring and

visualization page

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 163

 Confidentiality: Public

9 Annex C: Eclipse Theia Analysis

Eclipse Theia is an open-source extensible platform for building web- and cloud-based tools and IDE-like

products, that can run as desktop applications or in the browser [120] [121]. It is implemented in TypeScript,

is based on Microsoft's Visual Studio Code, and emphasizes customizability and extensibility. The project

was incepted in 2017, developed by TypeFox and Ericsson, with additional contributions from Red Hat,

IBM, Google and Arm Holdings. It was first launched in March 2017. Since May 2018, Theia has been a

project of the Eclipse Foundation [122].

C1 Main features

The following are main Eclipse Theia features [123] [124] [125]:

Same interface and capabilities on web and desktop

Theia is a unique IDE platform that supports building desktop and web-based IDEs from the same codebase.

From a high-level view, Theia consists of two parts: a frontend, running in a browser, and a backend server

running on any host. In a typical web-based scenario, the browser renders and handles all the UI, while the

backend is served from anywhere (just as a typical web/cloud application). In a local, desktop scenario, the

server part is deployed locally, and Electron is used as a replacement for the Browser. But in both cases,

the functionality offered is exactly the same.

Usability

Theia is focused on code, and so it is very slim in terms of footprint of features in the UI. Its usability

concept is centered around using the keyboard rather than the mouse. Many features are available via CLI

or the command palette only. Some claim it is a hybrid between an IDE and a simple code editor, reflecting

the preference of many developers nowadays, especially for web development. However, if the provided

usability concept does not fit, thanks to the extensibility and adaptability of the platform one can implement

a totally different approach with the same level of support.

Extensibility and adaptability

Theia is meant as a platform, not as a tool itself. This leads to a consistent “extension first” approach, which

basically means that everything is an extension, even the core features, which are provided by the project

itself. As a result, you can customize almost everything within Theia and even replace core features, if

needed. Moreover, Theia offers yet another mechanism for implementing custom functionalities. Through

a defined API, Theia allows developers to create so called “Theia plugins”, which are a more limited but

also more flexible way of contributing to the richfulness of the end product.

VS Code extension support

Theia is based on Microsoft Visual Studio Code, which makes both share a lot of commonalities, ideas and

concepts such as extensibility. VS Code extensions make use of a defined API that can be used for extending

VS Code. Theia implements the same API, so many VS Code extensions can also be used in Theia. In a

nutshell, VS Code extensions and Theia plugins are conceptually almost the same. Unfortunately, Microsoft

prohibits non-Visual Studio products from accessing and/or downloading any binaries from their

marketplace. This limitation not only affects Theia and all of its downstream adopters, but also releases

based on the open-source code of VS Code, such as VS Codium. For that reason, OpenVSX was created.

Open VSX

Open VSX is an open-source implementation of a VS Code extension registry that has been developed

under the umbrella of the Eclipse Foundation. A publicly hosted version of it is available at open-vsx.org.

The intention is to create a public registry for open-source VS Code extensions, accessible for everyone.

VS Code extension developers are encouraged to push their extensions to Open VSX in addition to

Microsoft's marketplace in order to gain better public reach. The registry can also be deployed and adjusted

by organizations, to host their own registries within their private networks.

Vendor neutral

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 164

 Confidentiality: Public

VS Code, base of Theia, is hosted by Microsoft; they can define and change the rules of the project at will

and at any point in time. They have control over the infrastructure, over contributions and over future

directions of the project. On the other hand, Eclipse Theia is hosted at the Eclipse Foundation, a vendor-

neutral organization controlled by its members. There are defined rules for governance, e.g., how to elect

new committers to the project. There is even a working group focused on cloud-based tools, the “Eclipse

Cloud Development Tools” working group, where strategic directions of the ecosystem as well as a

branding and marketing strategy are developed among its members, making Theia clearly more “vendor-

neutral” compared to VS Code.

C2 Technical view

How to run/launch Theia

▪ Option 1: Download and launch the Theia Blueprint

If you are interested in trying Theia on the desktop, this is the way to go. The Theia project provides a

template desktop product called Eclipse Theia Blueprint [122]. It comes with installers for all major

operating systems so it is very easy to consume. It assembles a subset of existing Theia features and

extensions and is a good way to showcase the capabilities of the platform.Option 1: Launch it from a

package.json (plain and simple)

As Eclipse Theia and its extensions are node.js packages and a Theia-based application is a collection of

packages, one very simple way to launch Theia plus selected extensions is to create a package.json listing

all extensions you want to include and launch it using node CLI. This essentially means you define your

own product based on Theia and run it. The advantage of this way of launching Theia is that it is very

simple and does not require more than yarn and npm. It also allows you to very easily add and remove

extensions.

▪ Option 2: Use a preconfigured docker image

Containerized images already contain any dependencies needed to run the product, which is faster and

convenient, especially for using “exotic” extensions of Theia, such as Rust or Go support. Further, if you

want to launch Theia on a server, you might prefer to have it encapsulated in a container. A list of

preconfigured images can be found on the theiaide dockerhub page targeting specific use cases, e.g. Python

or Ruby development, although the most famous one at the moment is definitely the Theia IDE for web

developers.

▪ Option 3: Clone, build and run from the sources

This option is very similar to option 1, but instead of getting pre-built Theia packages from npm package

registry (npmjs.com), you directly build them from the sources. The required effort and complexity to

launch Theia this way is very similar to option 1, but the benefit is that you can now modify the original

sources of Theia and immediately see any changes you apply. This option is interesting if you want to have

a deeper look at the internals of Theia and extend/fix/contribute something.

▪ Option 4: Use Eclipse Che (host runtimes and workspaces)

Eclipse Che provides a workspace server, meaning a server which can host the development environment

of one or several developers. When you move your development environment to the cloud, you will either

need to set up those developer runtimes yourself or use something like Eclipse Che. Eclipse Theia is the

default IDE for Che since version 7, which means that Che defines an IDE product based on Theia (called

Che-Theia). The simplest way to use Theia in Che is by using an openshift.io account and use or create a

stack with Eclipse Theia.

▪ Option 5: Use Gitpod (also host runtimes and workspaces)

Gitpod is another solution to host online workspaces including a browser IDE based on Theia. It was one

of the first products adopting Theia. Gitpod allows you to describe the required development environment

as a script, and will set-up a fresh development environment including the Theia IDE in an amazingly short

time. It can even pre build projects to get you ready to code with almost no waiting time, so that you can

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 165

 Confidentiality: Public

have a fresh working environment for every new task. Gitpod has been published as an open source project

in 2020 and can be self-hosted, but it also offers online workspaces as SaaS.

C3 Theia: Main elements

What you see after starting a Theia application is called the application shell [126]. Similarly, to the Eclipse

Workbench, it provides the means to layout the contained building blocks either programmatically or

through user interaction, i.e. drag and drop. Compared to the regular Eclipse IDE for establishing a

reference, the main elements in the shell are:

▪ Panels

A standard Theia shell is composed of a main area, which is similar to the editor area in Eclipse.

Additionally, the shell has three collapsible panels: left, right and bottom. These panels can contain any

number of widgets, ordered in tabs with support for splitting them.

▪ No Perspectives

Theia doesn't support the notion of perspectives, although support for it could be added with relative ease.

Theia stores the layout of the shell between sessions per workspace. If no previous layout exists, extensions

can contribute to the ‘initialLayout’.

▪ Widgets

The elements contained in the panels and the main area are called Widgets. Theia doesn't treat editors

differently than views from the application shell perspective, so you can freely arrange editors and views

in the panels and main area.

▪ Singleton Widgets or Views

Widgets that should only be opened at most once, like the file navigator or the git widget, are called

singleton widgets or simply views as in Eclipse. Implementing such widgets is very easy and Theia provides

a convenient base class for that called ‘AbstractViewContribution’. The UI in such widgets is usually

implemented using React. But Theia doesn't impose any special JavaScript Framework which allows for

reusing every JavaScript library out there.

▪ Editors

Theia embeds VS Code's Monaco editor and wraps it in a thin API, so other web-based editor widgets could

possibly be used as well. Language support is usually provided through the Language Server Protocol (LSP)

but additional API is available. One can, for instance, decorate an editor with complex inline widgets.

▪ Commands

A command in Theia is a means for users to run some code in the IDE. There are no things like categories,

and there is always only one single handler that implements a command. The rare cases (like copy/paste)

where multiple different implementations are needed for the same command depending on the context

where the command is invoked, are solved through specific contribution points within those handlers.

▪ Keybindings

Keybindings are very important, specifically for developer tools. Theia provides a keybinding registry,

where bindings for a command can be registered. Keybindings can be reconfigured by the users either per

workspace or per user. The KeybindingContext is the equivalent to what is a Context in the Eclipse IDE. It

allows for enabling or disabling keybindings in certain situations. A KeybindingContext can be reused and

consists of a single function implementing whether the context is active or not. Unlike the Eclipse IDE,

there is no hierarchy of contexts in its declaration as this can easily be modeled by calling a more coarse-

grained context from within another one.

▪ Menus

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 166

 Confidentiality: Public

Menus are registered in a central menu registry using paths. A path consists of a list of IDs (strings), where

the first segment indicates what menu the children are part of. For instance, the main menu bar is defined

with the id 'menubar'. Or if you want to contribute a menu entry to e.g. the editor's context menu, you would

start your menu contribution path with the id 'editor_context_menu'. Any view can add new top-level menu

paths and thus allow other extensions to contribute to that menu.

The other segments are pointing to groups contained in those menus. The ordering is based on the textual

order of the ids on the same level. Which is why group ids usually start with a number. For instance, if you

wanted to contribute an item to the open section in the main menu's file menu, the path would be:

export const MY_PATH = ['menubar', '1_file', '3_close', 'my_item'];

A menu item points to a command id and optionally has callback functions for indicating its enablement

status and whether it is visible at all.

C4 Customizing Theia: Plugins

Plugins are pieces of custom functionality that interact with Theia platform using a well-defined API [127]

[128] [129]. Plugins are encapsulated in a dedicated process and cannot “harm” the stability of the hosting

product. Moreover, plugins can be installed at runtime. However, the encapsulation has one drawback: you

can only extend or adapt what is exposed in the API, which means that plugins are significantly “less

powerful” in terms of what they can do.

Probably the most important thing to know about developing a plugin for Eclipse Theia is that the plugin

mechanism and the API available for plugins are almost identical to VS Code extensions. In fact, VS Code

extensions can usually be used in Theia. Therefore, most documentation and tutorials about extending VS

Code can be applied to Theia too.

Theia provides some tooling around developing its own plugins and is, therefore, the best tool for doing so.

The plugin tooling within Theia allows directly running an instance of a plugin under development. As a

plugin cannot exist on its own, the command “Hosted Plugin: Start Instance” will start a new Theia instance,

which is identical to your development environment, but that additionally hosts the deployed plugin under

development. To not get confused by the two Theia instances running in this scenario, the status bar at the

bottom indicates which Theia instance you are looking at. Other commands allow you to stop the plugin

instance, to restart it and to debug it, which enables breakpoints and source code inspection of a plugin

under development.

Plugin APIs

The Eclipse Theia plugin API consists of two conceptual parts, the programmatic TypeScript API and a

declarative API, to be used via the package.json file [129].

TypeScript API

The TypeScript API is very easy to use and is typically exposed under a single namespace via the module

import ‘@theia/plugin’ (typically bound to a variable “theia”). The following is an overview of its sub-

namespaces:

▪ commands: To add executable commands to the workbench and editors, which can be

triggered via the command palette, menu items or key bindings

▪ comment: To create a CommentController allowing more sophisticated commenting

support in the code editor

▪ debug: Anything related to extending the debug capabilities, but also to interact with

breakpoints and debug sessions

▪ env: Provides access to the environment that Theia is running in, e.g. the clipboard or the

user-specific language setting.

▪ languageServer: To register a custom language server.

▪ languages: Everything else language-related, e.g. to implement a custom “Call hierarchy

provider” or a custom formatter.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 167

 Confidentiality: Public

▪ plugins: To interact with other installed plugins. Plugin can expose an API to be used by

others.

▪ scm: To add support for a source control system

▪ tasks: To contribute or interact with tasks, e.g. being notified if a task has been completed.

Tasks are like jobs, e.g. a compilation could be a task

▪ window: To interact and contribute to the workbench, e.g. to show any kind of dialogue,

change the status bar or react to an opened terminal

▪ workspace: To interact with the workspace, e.g. to react on save or browsing folders.

There are two ways of using this API. The first one is to call a specific function to trigger an action. A good

example of this is triggering the notification in the ‘hello world’ example before. The second type of API

call is to register a “contribution” to Theia. This basically means something is added to Theia, typically a

callback, that is triggered by “some other action” in Theia. “Some other action” in this context can mean

the direct invocation of a command by the user (as in the ‘hello world’ example), but also more indirect use

cases, e.g. if the user triggers “call hierarchy” in the code editor. The second type typically uses functions

in the API starting with “register…”, e.g. the “registerCommand” call in the hello world example.

Declarative API

Besides the programmatic Typescript API, Theia provides a declarative API for plugins via the

package.json, called “contribution points”. Again, this is similar to VS Code [130], so you can refer to the

VS Code documentation about contribution points. Declarative contribution points make some use cases

simpler compared to code, especially configurations and “wiring things together”. Technically even more

important, these contributions can be simply parsed by Theia, without executing any code. This way is

faster and more robust from the viewpoint of Theia. As can be seen, the plugin API of Eclipse Theia is a

mix of declarative contributions (in the package.json), use case specific files (i.e. for configuration) and

code using the TypeScript API (for the implementation of the new features).

Customizing Theia: Extensions

Theia Extensions, in contrast to Plugins [127], are pieces of functionality that are built into the Theia

platform itself by means of dependency injection, and allow modifying, adapting or extending whatever

needed [128]. Needless to say, extensions are much more powerful in terms of what can be done, but that

also means it is much easier to break the platform itself. An extension is technically a node package, so it

contains a package.json in its root folder, and so the IDE platform being created can (must?) include it in

its dependencies.

A Theia extension consist of three important pieces:

▪ The package.json, which additionally to its regular role in Node.js, such as its name and

dependencies, contains some Theia-specific metadata:

o the keyword “theia-extension”, which marks the node package as a Theia extension. Theia

will run through all packages on start-up and process those that are marked as an extension.

o a list of “theiaExtensions”, enumerating TypeScript files (modules) that act as entry points

in the extension project.

▪ The actual “modules”, which wire your extensions to the Theia framework and other

extensions.

▪ The implementation of any features that are provided by your extension

The responsibility of a Theia extension module is to wire the extension features with the underlying

framework and/or other extensions. In fact, as the underlying framework also just consists of extensions,

these two cases are actually the same.

Dependency injection

To achieve communication between extensions, Theia uses dependency injection, implemented on the

library “inversify.js”. If you are familiar with the Eclipse Platform, inversify replaces extension points and

OSGi declarative services. If you are familiar with Google Guice, inversify is pretty much the same with

only small differences [131].

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 168

 Confidentiality: Public

From a high-level point of view, you can think of this mechanism as a global bulletin board. Any extension

can place or retrieve items from this board. As an example, an extension could place a “menu contribution”

on the board, expressing that it wants to add a menu item to a specific menu. The Theia-internal extension,

which is responsible for creating the menu at runtime can browse the board, pick up all contributed menu

items and render the menu accordingly. The technical term for this “board” using dependency injection is

a “context”. To be able to retrieve the correct objects from within the context, they are registered under a

specific “key”, which is conceptually a TypeScript interface (technically a “symbol”). The diagram below

shows the registration of a contribution along a menu contribution example. The “extension-frontend-

module” registers an object “ExtensionMenuContribution” in the context using the interface

“MenuContribution” as a key. The Theia core extension picks up those menu contributions, also using the

interface as a key.

Figure 113: Theia extension mechanism

Let's look at how this “wiring” looks like in code. If you open the “extension-frontend-module” of the

example extension, you will see the registration of two contributions, a CommandContribution and a

MenuContribution:

 bind(CommandContribution).to(ExtensionCommandContribution);

 bind(MenuContribution).to(ExtensionMenuContribution);

As can be seen in the code listing, the registration points to two extension-specific classes, the

“ExtensionCommandContribution” and the “ExtensionMenuContribution”. These actually implement the

desired behavior; in the example, a “hello world” action.

Contributions

The implementation of contributions is use case specific and usually specified by the contribution interface,

e.g. “MenuContribution”. There, you implement the functions required by the Contribution interface, and

link to the actual behavior and functionality of your extension.

C5 Why Eclipse Theia

The consortium was faced at the very beginning, with the need to decide whether to use a full-fledged IDE

or a web-embeddable code editor with syntax highlighting and some other features.

Shortly after starting to investigate the matter, it became clear that an embeddable WYSIWYG text editor

with syntax highlighting would not be suitable for the job, since we wanted to integrate a bunch of

functionalities that would simply not be possible to integrate in such kind of editors. So, for example, while

code completion based on snippets, syntax highlighting, or version control integration is quite well

supported on existing web-based code editors, like Codiad45 or IceCoder46 among others, other more

45 http://codiad.com/
46 https://icecoder.net/

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 169

 Confidentiality: Public

advanced features like refactoring support, debugging, or code generation are either not supported at all or

have limited support. Also, extended functionalities for those editors are relatively scarce, with a

community of users mainly focused on web development.

On the other hand, consortium members didn´t want to deal with the complexities that come with the usage

of a complete, full-blown desktop IDE, since the base idea was to provide a cloud-based working

environment, ready to be used, not requiring anything to be downloaded or installed locally, so platforms

like Eclipse RCP47 or Netbeans RCP and similar got discarded as well.

Microsoft’s VS Code, base of Eclipse Theia, was also considered as an option, as it provides most of the

features that the consortium was looking for, as well as a massive extension marketplace, and a big and

well established community of developers and adopters. But the fact that it is closed source and under

control of Microsoft makes it a not viable solution [132] [123].

Eclipse Theia came out to be the best option, combining both worlds. It is lightweight and simple enough

to be run on a browser, but can also be downloaded and run locally. It is highly customizable by its plugin

and extension mechanisms, it is supported and backed by several important organizations, and offers a big

amount of ready made extensions, developed open source by a very active community, with focus on

development in general. The fact that it shares the same API as VS Code makes it possible to use any of

the existing extensions created, although the developer must publish it first on the Eclipse Theia

marketplace in order for it to be freely redistributable.

Moreover, its election as default IDE for some workspace-handling solutions like Eclipse Che, its

adaptability and extensibility made it the perfect choice for the development of the SmartCLIDE project.

We can extract the following list of advantages and disadvantages of Theia as platform:

Table 51: Advantages and disadvantages of Theia

Advantages Disadvantages

▪ Fully customizable and adaptable. Being a

platform intended to serve as base for development

products, Theia makes an excellent job on offering

the most flexible base.

▪ Branding is perfectly supported, as can be seen on

the products from companies like Arduino, ARM,

or Gitpod

▪ Perfectly embeddable into other web-based

environment

▪ Easy to add new functionalities that could be

further extended with plugins

▪ Support for graphical modelling and BPMN

descriptions via Eclipse GLSP

▪ Relatively steep learning curve.

▪ The extension mechanism is poorly documented.

The extension points have to be looked for by

actually digging into the platform’s own source

code, which typically implies spending time

debugging and in trial-and-error.

▪ Lack of out-of-the-box graphical components for

UI interactions which makes it hard to share the

look and feel among extensions.

▪ Many of the existing extensions are published for

VS Code only, which in practice means that they

would not be directly usable in a

commercial/redistributable Theia-based product.

▪ Theia has its own plugin API, which extends and

attempts to override that of VS Code, causing that

eventually some of the existing extensions might

not run in Theia

47 https://wiki.eclipse.org/Rich_Client_Platform

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 170

 Confidentiality: Public

10 References

[1] “D1.4 The SmartCLIDE Concept,” Public Report, Oct. 2020.

[2] “D1.5 The SmartCLIDE Architecture,” Public Report, Oct. 2020.

[3] “D2.1 Innovative Approaches and Features on Services Discovery, Creation, Composition and

Deployment,” Public Deliverable, Aug. 2021.

[4] “Manifesto for Agile Software Development.” https://agilemanifesto.org/ (accessed Sep. 08, 2021).

[5] 14:00-17:00, “ISO/IEC/IEEE 42010:2011,” ISO.

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/05/50508.html

(accessed Sep. 08, 2021).

[6] “Extensions for Visual Studio family of products | Visual Studio Marketplace.”

https://marketplace.visualstudio.com/vscode (accessed Sep. 07, 2021).

[7] “Kite - Free AI Coding Assistant and Code Auto-Complete Plugin,” Code Faster with Kite.

https://www.kite.com/ (accessed Sep. 07, 2021).

[8] “Alizadehsani, Z., Gomez, E. G., Ghaemi, H., González, S. R., Jordan, J., Fernández, A., & Pérez-

Lancho, B. (2021, April). Modern Integrated Development Environment (IDEs). In Sustainable Smart

Cities and Territories International Conference (pp. 274-288). Springer, Cham.”

[9] M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “PARC: Recommending API methods parameters,”

in 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep. 2015,

pp. 330–332. doi: 10.1109/ICSM.2015.7332481.

[10] A. Ohiomah, P. Andreev, and M. Benyoucef, “A Review of Big Data Predictive Analytics in

Information Systems Research,” Information Systems, p. 23, 2017.

[11] S. E. El-Sayyad, A. I. Saleh, and H. A. Ali, “A new semantic web service classification (SWSC)

strategy,” Cluster Comput, vol. 21, no. 3, pp. 1639–1665, Sep. 2018, doi: 10.1007/s10586-018-2367-

9.

[12] “Alizadehsani, Z., Gomez, E. G., Ghaemi, H., González, S. R., Jordan, J., Fernández, A., & Pérez-

Lancho, B. (2021, April). Modern Integrated Development Environment (IDEs). In Sustainable Smart

Cities and Territories International Conference(pp. 274-288). Springer, Cham.”.

[13] “Dynatrace | The Leader in Automatic and Intelligent Observability,” Dynatrace.

https://www.dynatrace.com/ (accessed Sep. 21, 2021).

[14] “Cloud Computing Services | Microsoft Azure.” https://azure.microsoft.com/en-us/ (accessed Sep. 21,

2021).

[15] K. W. Church, “Emerging trends: I did it, I did it, I did it, but. . .,” Natural Language Engineering, vol.

23, no. 3, pp. 473–480, May 2017, doi: 10.1017/S1351324917000067.

[16] “fastText.” https://fasttext.cc/index.html (accessed Sep. 21, 2021).

[17] “RapidAPI - The Next Generation API Platform,” RapidAPI. https://rapidapi.com/ (accessed Aug. 29,

2021).

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language Model,”

Journal of Machine Learning Research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[19] D. D. Rathod, “PERFORMANCE EVALUATION OF RESTFUL WEB SERVICES AND SOAP /

WSDL WEB SERVICES,” International Journal of Advanced Research in Computer Science, vol. 8,

no. 7, Art. no. 7, Aug. 2017, doi: 10.26483/ijarcs.v8i7.4349.

[20] “Code Faster with AI Code Completions.”

https://www.tabnine.com/about?utm_term=&utm_campaign=&utm_source=adwords&utm_medium

=ppc&hsa_acc=4311736126&hsa_cam=14293437790&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 171

 Confidentiality: Public

hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=CjwKCAjwhaaKBhBcEiwA8acsHB3g8f

wVmy2V3_zfAV-4H4tknbqBz8EJqrKyxr4H7Zy7GdnviQBG3RoCx5MQAvD_BwE (accessed Sep.

21, 2021).

[21] “Kite - Free AI Coding Assistant and Code Auto-Complete Plugin,” Code Faster with Kite.

https://www.kite.com/ (accessed Aug. 29, 2021).

[22] M. Allamanis and C. Sutton, “Mining source code repositories at massive scale using language

modeling,” in 2013 10th Working Conference on Mining Software Repositories (MSR), May 2013, pp.

207–216. doi: 10.1109/MSR.2013.6624029.

[23] “ProgrammableWeb,” ProgrammableWeb. https://www.programmableweb.com/ (accessed Sep. 10,

2021).

[24] “RapidAPI - The Next Generation API Platform,” RapidAPI. https://rapidapi.com/ (accessed Sep. 10,

2021).

[25] P. Willett, “The Porter stemming algorithm: then and now,” Program, vol. 40, no. 3, pp. 219–223, Jul.

2006, doi: 10.1108/00330330610681295.

[26] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A Survey of Machine Learning for Big Code

and Naturalness,” ACM Comput. Surv., vol. 51, no. 4, p. 81:1-81:37, Jul. 2018, doi: 10.1145/3212695.

[27] Codeprep. giganticode, 2021. Accessed: Sep. 21, 2021. [Online]. Available:

https://github.com/giganticode/codeprep

[28] W. Li et al., “Semantic-based web service discovery and chaining for building an Arctic spatial data

infrastructure,” Computers & Geosciences, vol. 37, no. 11, pp. 1752–1762, Nov. 2011, doi:

10.1016/j.cageo.2011.06.024.

[29] “ERGOT: A Semantic-Based System for Service Discovery in Distributed Infrastructures.”

https://ieeexplore.ieee.org/document/5493471 (accessed Aug. 29, 2021).

[30] Y. Yang et al., “ServeNet: A Deep Neural Network for Web Services Classification,” 2020 IEEE

International Conference on Web Services (ICWS), pp. 168–175, Oct. 2020, doi:

10.1109/ICWS49710.2020.00029.

[31] K. Punitha, “A Novel Mixed Wide and PSO-Bi-LSTM-CNN Model for the Effective Web Services

Classification,” WEB, vol. 17, no. 2, pp. 218–237, Dec. 2020, doi: 10.14704/WEB/V17I2/WEB17026.

[32] R. Nisa and U. Qamar, “A text mining based approach for web service classification,” Information

systems and e-business management : ISeB, vol. 13, no. 4, Nov. 2015.

[33] M. Crasso, A. Zunino, and M. Campo, “AWSC: An approach to Web service classification based on

machine learning techniques,” Int. Artif., vol. 12, no. 37, p. 561, Mar. 2008, doi: 10.4114/ia.v12i37.955.

[34] C. Sanchez Sanchez, E. Villatoro Tello, A. G. Ramirez De La Rosa, H. Jimenez Salazar, and D. E.

Pinto Avendaño, “WSDL Information selection for improving web service classification,” 2017,

Accessed: Aug. 29, 2021. [Online]. Available:

http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/503

[35] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation for code search using

crowdsourced knowledge,” Empirical Softw. Engg., vol. 24, no. 4, pp. 1869–1924, Aug. 2019, doi:

10.1007/s10664-018-9671-0.

[36] “GloVe: Global Vectors for Word Representation.” https://nlp.stanford.edu/projects/glove/ (accessed

Sep. 21, 2021).

[37] C. Ragkhitwetsagul and J. Krinke, “Siamese: scalable and incremental code clone search via multiple

code representations,” Empir Software Eng, vol. 24, no. 4, pp. 2236–2284, Aug. 2019, doi:

10.1007/s10664-019-09697-7.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 172

 Confidentiality: Public

[38] T. Beltramelli, “pix2code: Generating Code from a Graphical User Interface Screenshot,” in

Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, New

York, NY, USA, Jun. 2018, pp. 1–6. doi: 10.1145/3220134.3220135.

[39] S. E. V. and P. Samuel, “Automatic Code Generation From UML State Chart Diagrams,” IEEE Access,

vol. 7, pp. 8591–8608, 2019, doi: 10.1109/ACCESS.2018.2890791.

[40] P. I and J. Paulose, “Prediction of Answer Keywords using Char-RNN,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 9, no. 3, Art. no. 3, Jun. 2019, doi:

10.11591/ijece.v9i3.pp2164-2176.

[41] “Autocompletion with deep learning.” https://www.tabnine.com/ (accessed Aug. 29, 2021).

[42] V. Jain, P. Agrawal, S. Banga, R. Kapoor, and S. Gulyani, “Sketch2Code: Transformation of Sketches

to UI in Real-time Using Deep Neural Network,” arXiv:1910.08930 [cs, eess], Oct. 2019, Accessed:

Aug. 29, 2021. [Online]. Available: http://arxiv.org/abs/1910.08930

[43] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “DeepCoder: Learning to Write

Programs,” arXiv:1611.01989 [cs], Mar. 2017, Accessed: Aug. 29, 2021. [Online]. Available:

http://arxiv.org/abs/1611.01989

[44] R. F. G. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao, and M. de Almeida Maia,

“Recommending comprehensive solutions for programming tasks by mining crowd knowledge,” in

Proceedings of the 27th International Conference on Program Comprehension, Montreal, Quebec,

Canada, May 2019, pp. 358–368. doi: 10.1109/ICPC.2019.00054.

[45] S. Jörges, Ed., Construction and Evolution of Code Generators: A Model-Driven and Service-Oriented

Approach. Berlin Heidelberg: Springer-Verlag, 2013. doi: 10.1007/978-3-642-36127-2.

[46] M. M. Rahman, C. Roy, and D. Lo, “RACK: Automatic API Recommendation Using Crowdsourced

Knowledge,” 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2016, doi: 10.1109/SANER.2016.80.

[47] “Deep Code Search | IEEE Conference Publication | IEEE Xplore.”

https://ieeexplore.ieee.org/abstract/document/8453172 (accessed Sep. 21, 2021).

[48] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of the 40th International Conference

on Software Engineering, Gothenburg Sweden, May 2018, pp. 933–944. doi:

10.1145/3180155.3180167.

[49] “Codota - AI Code Completions for your IDE, Avalible Search for Java Code on 6.”

https://www.codota.com (accessed Aug. 29, 2021).

[50] C. Zhang et al., “Automatic parameter recommendation for practical API usage,” in 2012 34th

International Conference on Software Engineering (ICSE), Jun. 2012, pp. 826–836. doi:

10.1109/ICSE.2012.6227136.

[51] A. T. Nguyen et al., “API code recommendation using statistical learning from fine-grained changes,”

in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, New York, NY, USA, Nov. 2016, pp. 511–522. doi: 10.1145/2950290.2950333.

[52] B. Uyanik and V. H. Şahin, “A template-based code generator for web applications,” 2020, doi:

10.3906/elk-1910-44.

[53] S. Proksch, J. Lerch, and M. Mezini, “Intelligent Code Completion with Bayesian Networks,” ACM

Trans. Softw. Eng. Methodol., vol. 25, no. 1, p. 3:1-3:31, Dec. 2015, doi: 10.1145/2744200.

[54] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep learning met code search,” in

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, New York, NY, USA, Aug. 2019, pp. 964–

974. doi: 10.1145/3338906.3340458.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 173

 Confidentiality: Public

[55] B. A. Campbell and C. Treude, “NLP2Code: Code Snippet Content Assist via Natural Language

Tasks,” 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2017,

doi: 10.1109/ICSME.2017.56.

[56] A. Vaswani et al., “Attention Is All You Need,” arXiv:1706.03762 [cs], Dec. 2017, Accessed: Sep. 21,

2021. [Online]. Available: http://arxiv.org/abs/1706.03762

[57] “Better Language Models and Their Implications,” OpenAI, Feb. 14, 2019.

https://openai.com/blog/better-language-models/ (accessed Sep. 21, 2021).

[58] “GPT-3: Its Nature, Scope, Limits, and Consequences | SpringerLink.”

https://link.springer.com/article/10.1007/s11023-020-09548-1 (accessed Sep. 21, 2021).

[59] “distilgpt2 · Hugging Face.” https://huggingface.co/distilgpt2 (accessed Sep. 21, 2021).

[60] “QWS Dataset.” https://qwsdata.github.io/citations.html (accessed Aug. 29, 2021).

[61] “scikit-learn: machine learning in Python — scikit-learn 0.24.2 documentation.” https://scikit-

learn.org/stable/ (accessed Sep. 21, 2021).

[62] “TensorFlow,” TensorFlow. https://www.tensorflow.org/ (accessed Sep. 21, 2021).

[63] “Keras: the Python deep learning API.” https://keras.io/ (accessed Sep. 21, 2021).

[64] “Natural Language Toolkit — NLTK 3.6.3 documentation.” https://www.nltk.org/ (accessed Sep. 21,

2021).

[65] “spaCy · Industrial-strength Natural Language Processing in Python.” https://spacy.io/ (accessed Sep.

21, 2021).

[66] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter,” arXiv:1910.01108 [cs], Feb. 2020, Accessed: Sep. 21, 2021. [Online].

Available: http://arxiv.org/abs/1910.01108

[67] tree-sitter. tree-sitter, 2021. Accessed: Sep. 21, 2021. [Online]. Available: https://github.com/tree-

sitter/tree-sitter

[68] GitLab Docs, “REST API resources.” [Online]. Available:

https://docs.gitlab.com/ee/api/api_resources.html

[69] GitLab Docs, “GraphQL API.” [Online]. Available: https://docs.gitlab.com/ee/api/graphql/

[70] “Search API | Elasticsearch Guide [7.14] | Elastic.”

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html (accessed Aug. 29,

2021).

[71] “Document APIs | Elasticsearch Guide [7.14] | Elastic.”

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html (accessed Sep. 08, 2021).

[72] “International Committee for Information for Information Technology Standards - Cyber security

technical committee,” 1. American National Standard for Information Technology Next Generation

Access Control (NGAC).” ANSI, INCITS 565-2020, April 2020.

[73] “NGAC policy tool, policy server, and EPP Release note for v0.4.7 development version,” Rance

DeLong, The Open Group, July 2021.

[74] A. Cimatti, C. Tian, and S. Tonetta, “NuRV: A nuXmv Extension for Runtime Verification,” in

Runtime Verification, Cham, 2019, pp. 382–392. doi: 10.1007/978-3-030-32079-9_23.

[75] R. Cavada et al., “The nuXmv Symbolic Model Checker,” in Computer Aided Verification, Cham,

2014, pp. 334–342. doi: 10.1007/978-3-319-08867-9_22.

[76] A. Cimatti, C. Tian, and S. Tonetta, “Assumption-Based Runtime Verification with Partial

Observability and Resets,” in Runtime Verification, Cham, 2019, pp. 165–184. doi: 10.1007/978-3-

030-32079-9_10.

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 174

 Confidentiality: Public

[77] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for finite-state

verification,” in Proceedings of the 21st international conference on Software engineering, New York,

NY, USA, May 1999, pp. 411–420. doi: 10.1145/302405.302672.

[78] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static Analysis-Based Approaches for Secure

Software Development,” in Security in Computer and Information Sciences, Cham, 2018, pp. 142–

157. doi: 10.1007/978-3-319-95189-8_13.

[79] E. Gelenbe et al., “NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the

Smart Mobile Ecosystem,” in Information Sciences and Systems 2013, Cham, 2013, pp. 369–378. doi:

10.1007/978-3-319-01604-7_36.

[80] S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and Discovery Using Machine-

Learning and Data-Mining Techniques: A Survey,” ACM Comput. Surv., vol. 50, no. 4, p. 56:1-56:36,

Aug. 2017, doi: 10.1145/3092566.

[81] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Jun. 2019, pp. 4171–4186. doi:

10.18653/v1/N19-1423.

[82] H. Avram, S. Riccardo, J. Wouter, and W. James, “Software Vulnerability Prediction using Text

Analysis Techniques,” InProceedings of the 4th international workshop on Security measurements and

metrics 2012 Sep 21 (pp. 7-10).

[83] “Krsul IV. Software vulnerability analysis.,” Purdue University; 1998.

[84] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security: Programming Flaws and

How to Fix Them, 1st edition. New York: McGraw-Hill Education, 2009.

[85] P. Morrison, D. Moye, R. Pandita, and L. Williams, “Mapping the field of software life cycle security

metrics,” Information and Software Technology, vol. 102, pp. 146–159, Oct. 2018, doi:

10.1016/j.infsof.2018.05.011.

[86] M. Green and M. Smith, “Developers are Not the Enemy!: The Need for Usable Security APIs,” IEEE

Security Privacy, vol. 14, no. 5, pp. 40–46, Sep. 2016, doi: 10.1109/MSP.2016.111.

[87] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity, Code Churn, and

Developer Activity Metrics as Indicators of Software Vulnerabilities,” IEEE Transactions on Software

Engineering, vol. 37, no. 6, pp. 772–787, Nov. 2011, doi: 10.1109/TSE.2010.81.

[88] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics as early

indicators of vulnerabilities,” Journal of Systems Architecture, vol. 57, no. 3, pp. 294–313, Mar. 2011,

doi: 10.1016/j.sysarc.2010.06.003.

[89] M. Zhang, X. de Carné de Carnavalet, L. Wang, and A. Ragab, “Large-Scale Empirical Study of

Important Features Indicative of Discovered Vulnerabilities to Assess Application Security,” IEEE

Transactions on Information Forensics and Security, vol. 14, no. 9, pp. 2315–2330, Sep. 2019, doi:

10.1109/TIFS.2019.2895963.

[90] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, and D. Tzovaras, “Technical debt as an indicator

of software security risk: a machine learning approach for software development enterprises,”

Enterprise Information Systems, vol. 0, no. 0, pp. 1–43, Sep. 2020, doi:

10.1080/17517575.2020.1824017.

[91] “A hierarchical model for quantifying software security based on static analysis alerts and software

metrics | SpringerLink.” https://link.springer.com/article/10.1007/s11219-021-09555-0 (accessed Sep.

04, 2021).

[92] “What are Message Brokers?,” Aug. 11, 2021. https://www.ibm.com/cloud/learn/message-brokers

(accessed Sep. 04, 2021).

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 175

 Confidentiality: Public

[93] “What are Message Brokers? | IBM.” https://www.ibm.com/cloud/learn/message-brokers (accessed

Sep. 04, 2021).

[94] “What is RabbitMQ? | A Quick Glance of What is RabbitMQ?,” EDUCBA, Feb. 22, 2020.

https://www.educba.com/what-is-rabbitmq/ (accessed Sep. 04, 2021).

[95] “Management Plugin — RabbitMQ.” https://www.rabbitmq.com/management.html (accessed Sep. 04,

2021).

[96] “Part 1: RabbitMQ for beginners - What is RabbitMQ? - CloudAMQP.”

https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html (accessed

Sep. 04, 2021).

[97] “Rabbitmq - Official Image | Docker Hub.” https://hub.docker.com/_/rabbitmq (accessed Sep. 06,

2021).

[98] “Using WebSocket Requests,” Postman Learning Center. https://learning.postman.com (accessed Sep.

06, 2021).

[99] “RabbitMQ Tutorials — RabbitMQ.” https://www.rabbitmq.com/getstarted.html (accessed Sep. 06,

2021).

[100] “Server Administration Guide.” https://www.keycloak.org/docs/latest/server_admin/index.html

(accessed Sep. 04, 2021).

[101] “What Is Identity and Access Management? Guide to IAM,” SearchSecurity.

https://searchsecurity.techtarget.com/definition/identity-access-management-IAM-system (accessed

Sep. 04, 2021).

[102] D. Strom, “What is IAM? Identity and access management explained,” CSO Online, Apr. 08, 2021.

https://www.csoonline.com/article/2120384/what-is-iam-identity-and-access-management-

explained.html (accessed Sep. 04, 2021).

[103] “Identity and Access Management (IAM),” Fortinet.

https://www.fortinet.com/resources/cyberglossary/identity-and-access-management (accessed Sep.

04, 2021).

[104] “What Keycloak Is and What It Does? - DZone Security,” dzone.com.

https://dzone.com/articles/what-is-keycloak-and-when-it-may-help-you (accessed Sep. 04, 2021).

[105] CoMakeIT, “A Quick Guide To Using Keycloak For Identity And Access Management,” Aug. 02,

2018. https://www.comakeit.com/blog/quick-guide-using-keycloak-identity-access-management/

(accessed Sep. 04, 2021).

[106] “Keycloak: Secure & easy Identity & Access Management | Single Sign-On & IAM | AOE.”

https://www.aoe.com/en/expertise/keycloak.html (accessed Sep. 04, 2021).

[107] N. Köbler, “Keycloak Admin Client(s) - multiple ways to manage your SSO system | Niko Köbler

- Keycloak Expert, Software-Architect & Trainer.” https://www.n-k.de/2016/08/keycloak-admin-

client.html (accessed Sep. 04, 2021).

[108] “Managing identities and authorizations :: Eclipse Che Documentation.”

https://www.eclipse.org/che/docs/che-7/administration-guide/managing-identities-and-authorizations/

(accessed Sep. 04, 2021).

[109] “Getting Started Guide.” https://www.keycloak.org/docs/latest/getting_started/ (accessed Sep. 04,

2021).

[110] “Unit Testing Best Practices: 9 to Ensure You Do It Right,” AI-driven E2E automation with code-

like flexibility for your most resilient tests, Mar. 11, 2021. https://www.testim.io/blog/unit-testing-best-

practices/ (accessed Sep. 07, 2021).

[111] “What is Integration Testing (Tutorial with Integration Testing Example).”

https://www.softwaretestinghelp.com/what-is-integration-testing/ (accessed Sep. 07, 2021).

 D3.1 Early SmartCLIDE Cloud IDE Design

 Version 1.0 176

 Confidentiality: Public

[112] “What is API Testing? | Definition, Benefits, Types & Tool.” https://www.katalon.com/api-testing/

(accessed Sep. 07, 2021).

[113] Atlassian, “The different types of testing in software,” Atlassian.

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing (accessed

Sep. 07, 2021).

[114] “Software Testing - Levels.”

https://www.tutorialspoint.com/software_testing/software_testing_levels.htm (accessed Sep. 07,

2021).

[115] “What is Usability Testing?,” The Interaction Design Foundation. https://www.interaction-

design.org/literature/topics/usability-testing (accessed Sep. 07, 2021).

[116] “JUnit 5.” https://junit.org/junit5/ (accessed Sep. 07, 2021).

[117] “Maven Surefire Plugin – Introduction.” https://maven.apache.org/surefire/maven-surefire-plugin/

(accessed Sep. 07, 2021).

[118] “Prolog Unit Tests.” https://www.swi-

prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27) (accessed Sep. 07, 2021).

[119] SmartCLIDE Confidential Report, “D1.3 Use Case Scenarios,” Oct. 2020.

[120] Wikipedia, “Eclipse Theia.” [Online]. Available: https://en.wikipedia.org/wiki/Eclipse_Theia

[121] Eclipse Foundation, “Theia - An Open, Flexible and Extensible Cloud & Desktop IDE Platform.”

[Online]. Available: https://theia-ide.org/

[122] Eclipse Foundation, “Eclipse Theia Project.” [Online]. Available:

https://projects.eclipse.org/projects/ecd.theia

[123] “Eclipse Source, Eclipse Theia FAQ.” [Online]. Available:

https://eclipsesource.com/blogs/2019/12/24/eclipse-theia-ide-faq/

[124] “Eclipse Source, Eclipse Theia vs. VS Code.” [Online]. Available:

https://eclipsesource.com/blogs/2019/12/06/the-eclipse-theia-ide-vs-vs-code/

[125] “dev.to, Theia 1.0 - Finally a good browser IDE.” [Online]. Available:

https://dev.to/svenefftinge/theia-1-0-finally-a-good-browser-ide-3ok0

[126] Eclipse Foundation, “The busy RCP’s developer guide to Eclipse Theia.” [Online]. Available:

https://www.eclipse.org/community/eclipse_newsletter/2018/october/theia.php

[127] Eclipse Source, “Eclipse Theia extensions vs. plugins vs. Che-Theia plugins.” [Online]. Available:

https://eclipsesource.com/blogs/2019/10/10/eclipse-theia-extensions-vs-plugins-vs-che-theia-plugins/

[128] J. Helming et al., “How to create/develop an Eclipse Theia IDE extension,” EclipseSource, Nov.

21, 2019. https://eclipsesource.com/blogs/2019/11/21/how-to-create-develop-an-eclipse-theia-ide-

extension/ (accessed Sep. 07, 2021).

[129] Eclipse Source, “How to create/develop an Eclipse Theia IDE plugin.” [Online]. Available:

https://eclipsesource.com/blogs/2019/10/17/how-to-add-extensions-and-plugins-to-eclipse-theia/

[130] Microsoft, “Visual Studio Code extension API.” [Online]. Available:

https://code.visualstudio.com/api

[131] Eclipse Source, “How to inversify() in Eclipse Theia.” [Online]. Available:

https://eclipsesource.com/blogs/2018/11/28/how-to-inversify-in-eclipse-theia/

[132] “JAXEnter, What Theia is all about.” [Online]. Available: https://jaxenter.com/theia-ide-efftinge-

interview-134467.html

