

Every effort has been made to ensure that all statements and information contained herein are accurate, however

the SmartCLIDE Project Partners accept no liability for any error or omission in the same.

© 2022 Copyright in this document remains vested in the SmartCLIDE Project Partners.

This project has received funding from the European Union‟s Horizon 2020 research and

innovation programme under grant agreement No 871177

Deliverable D4.3

Final Validation Procedure

WP 4

Project Acronym & Number: SmartCLIDE – GA 871177

Project Title:

Smart Cloud Integrated Development Environment

supporting the full-stack implementation, composition

and deployment of data-centred services and

applications in the cloud

Status: Final

Dissemination Level: Public

Authors: TOG

Contributors: CONTACT, INTRA, UNP and WT

Document Identifier: D4.3 Final Validation Procedure.docx

Date: 20.07.2022

Revision: 2.0

Project website address: www.smartclide.eu

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 2

 Confidentiality: Public

Project Partners

Institut für angewandte Systemtechnik Bremen GmbH (ATB), Germany

INTRASOFT International SA (INTRA), Luxembourg

Fundacion Instituto Internacionale de Investigacion en Intelligencia Artificial y Ciencias de

la Computacion (AIR), Spain

University of Macedonia (UoM), Greece

Ethniko Kentro Erevnas Kai Technologikis Anaptyxis (CERTH), Greece

The Open Group Ltd (TOG), United Kingdom

Eclipse Foundation Europe GmbH (ECLIPSE), Germany

Wellness Telecom SL (WT), Spain

Unparallel Innovation LDA (UNP), Portugal

CONTACT Software GmbH (CONTACT), Germany

Kairos Digital, Analytics and Big Data Solutions SL (KAIROS DS), Spain

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 3

 Confidentiality: Public

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Document Control

Version Notes Date

0.2 First outline and inputs from industrial pilot partners 25.05.2021

0.4 Introduction and methodology sections 12.06.2021

0.5 Initial validation tests for Pilot Cases and KPIs 29.06.2021

0.6 Updated validation tests from UNP, Intra and Contact 29.07.2021

0.7 Updated KPIs/focus areas from UNP, Intra and Contact 01.08.2021

0.8 Inclusion of validation tests from WT 03.09.2021

0.9 Inclusion of inputs from WT for KPIs/focus areas 22.09.2021

1.0 Final reviews and QA version for EC submission 27.09.2021

1.4 Initial draft of updated sections and revisions for full prototypes 01.06.2022

1.5 Additional test runs for final validations by industrial pilot partners 13.06.2022

1.8 Revisions of test runs to align with full prototype functionality 20.06.2022

1.9 Further revisions of test runs and streamlining of test procedures 15.07.2022

2.0 Final reviews and QA version for EC submission 20.07.2022

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 4

 Confidentiality: Public

Abbreviations

D Deliverable

e.g.
exempli gratia in Latin meaning:

for example

EC European Commission

etc.
et cetera in Latin meaning: and so

forth

EU European Union

i.e.
id est in Latin meaning: that is to

say

IDE
Integrated Development

Environment

IoT Internet of Things

KPI Key Performance Indicator

M Project month

QA Quality Assurance

QoE Quality of Experience

QoS Quality of Service

T Task

VM Virtual Machine

V&V Verification & Validation

w.r.t. with respect to

WP Workpackage

WPn Workpackage number n

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 5

 Confidentiality: Public

Executive Summary

This deliverable describes the validation procedures that will be applied for the full

prototype of the SmartCLIDE solution. This deliverable provides a description of the

validation environments that will be used by each of the industrial Pilot Case

partners, along with the individual Test Runs that will be executed to determine the

degree of achievement in fulfilling the industrial needs for a Cloud-based IDE. Also

included are the procedures for Pilot Case partners to report bugs and suggested

revisions to the research and development teams for inclusion in the final prototype

of the solution delivered at the end of the project. A final section addresses the

overall performance indicators and targets that will form the basis for the Assessment

Methodology and associated Assessment Scenarios under Workpackage 5, which

complement the full prototype validation testing by quantifying the business,

operational and other impacts delivered by the project technologies for each of the

industrial Pilot Case partners.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 6

 Confidentiality: Public

Table of Contents

1 Introduction .. 8

1.1 Overview ... 8

1.2 Validation standards and practices .. 8

1.3 Definition of Validation .. 9

1.4 Relationship to other deliverables ... 9

1.5 Structure of this document ... 10

1.6 Contributors ... 10

2 Validation Test Cases ... 10

2.1 Intrasoft International Pilot Case validation .. 11
2.1.1 Validation Environment .. 12
2.1.2 Test Run 1: Design and development functionalities ... 12
2.1.3 Test Run 2: Test optimisation and deployment .. 18
2.1.4 Test Run 3: Improve code quality of a service ... 20
2.1.5 Test Run 4: Assess performance of deployed service(s) .. 20

2.2 Wellness Telecom Pilot Case validation ... 22
2.2.1 Validation Environment .. 22
2.2.2 Test Run 1: Customised deployment .. 24
2.2.3 Test Run 2: Service management ... 25
2.2.4 Test Run 3: QoS monitoring ... 27
2.2.5 Test Run 4: Scaling of the Communication Platform ... 28

2.3 Unparallel Innovation Pilot Case validations .. 30
2.3.1 Validation Environment .. 30
2.3.2 Test Run 1: Creation of services ... 32
2.3.3 Test Run 2: Classification of services ... 39
2.3.4 Test Run 3: Estimate deployment costs .. 39

2.4 CONTACT Software Test Runs .. 40
2.4.1 Validation Environment .. 41
2.4.2 Test Run 1: Collaborative development.. 41
2.4.3 Test Run 2: Performance analysis ... 45
2.4.4 Test Run 3: Improve code quality of service .. 46

3 Bug Tracking... 48

4 Performance Indicators and Targets .. 49

5 Conclusion ... 52

List of Figures

Figure 1: Relations between SmartCLIDE and Pilot Case ... 23

Figure 2: Issue Creation Form in GitHub ... 48

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 8

 Confidentiality: Public

1 Introduction

1.1 Overview

Software validation is part of the software engineering tasks of Verification and

Validation (V&V), which is a disciplined approach to determine that software

systems meet their specifications and fulfil their intended purpose. The starting point

for V&V in SmartCLIDE are the requirements identified early in the project (see

D1.2), which specifies and prioritises the capabilities and features needed by the

industrial Pilot Case partners. These have been further elaborated with the

specification of the Use Case Scenarios that represent the types of software

development and deployment tasks each Pilot Case partner expects to be able to

carry out through the introduction of a Cloud-based IDE.

This Final Validation Procedure deliverable is designed to prescribe the scope,

approach, and resources of the testing activities to be carried out to validate the full

prototype of the SmartCLIDE IDE. The plan identifies the items to be tested from an

industrial application viewpoint, the features to be tested, and the types of testing to

be performed by the Pilot Case partner teams in their role as end users of the project

technologies.

The output of these validation procedures for the full prototype technologies is the

confirmation from the end users‟ perspective that the features and capabilities for

Cloud-based development meets the identified user‟s needs, while also potentially

highlighting any issues or implementation decisions that might be improved to

maximise meeting the end users‟ expectations in the final prototype delivery at the

end of the project.

1.2 Validation standards and practices

Software Engineering standards addressing V&V of software systems have been

established and widely adopted by industry for more than 30 years with the first

IEEE 1012 standard of definitions and practices published in the late 1980s. The

more recent and relevant standards that have been used as the basis for the project

validation procedures are the following:

 IEEE 1012-2016 – System, Software, and Hardware Verification, and

Validation, is the latest revision of IEEE 1012 standard published in 2017,

which defines the V&V processes in terms of specific activities and related

tasks. This standard considers that V&V may be performed at the

system, subsystem, software element, or hardware element level, or on any

combination. Early versions of this standard focused on V&V for software,

while later versions also included hardware.

 ISO/IEC/IEEE 12207:2017 – establishing standard definitions of the software

lifecycles and life cycle processes. It contains processes, activities, and tasks to

be applied during the software product or service development, operation,

maintenance and disposal.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 9

 Confidentiality: Public

The SmartCLIDE project workpackages and tasks were also prepared in compliance

with the above Software Engineering standards and definitions.

1.3 Definition of Validation

In accordance with the above referenced standards, the SmartCLIDE validation tasks

and plans contained in this deliverable use the following definition:

Validation is assuring that a software system meets the user’s needs

A clear understanding of the term is important, otherwise assumptions concerning

what tasks are involved and responsibilities can lead to some confusion regarding the

scope and purpose of validation testing. Validation testing occurs when there are

concrete features and capabilities that can be evaluated by the end users of the

system. It is a key process to ensure the project what is being or has been developed

meets the expectations of the users.

Verification testing is also an important and complimentary process within the

project, which focuses on addressing whether the SmartCLIDE software was

correctly developed. Verification testing in SmartCLIDE is carried out by the

research and development teams responsible for each component and the integrated

SmartCLIDE IDE. Validation testing in SmartCLIDE in accordance with ISO and

IEEE standards is carried out by the industrial Pilot Case partners to assure the

system meets their needs for carrying out Cloud-based software design,

development, testing, deployment and maintenance tasks. A common reminder to

distinguish between the two elements of V&V is:

 Verification: “Are we building the product right?” – e.g. are there defects and

bugs in the code?

 Validation: “Are we building the right product?” – e.g. is the software usable

and meets the needs of the user?

This deliverable describes the validation testing that is carried out by the Pilot Case

partners as end users of the full SmartCLIDE prototype.

1.4 Relationship to other deliverables

This deliverable focuses on the validation plans for the full prototype of the

SmartCLIDE IDE by the industrial Pilot Case partners in the final months of the

project. The validation tasks are based on the specification of the Pilot Case systems

and the associated requirements prioritised from the perspective of each of the

industrial domains targeted by the project, as provided in deliverable D1.2 –

Requirements Analysis, and the representative use cases and scenarios specified by

each of the Pilot Case partners in deliverable D1.3 – Use Case Scenarios. The use

cases serve as a detailed specification of the SmartCLIDE users‟ future needs and are

intended to describe what the SmartCLIDE technologies are envisioned to deliver in

terms of new functionalities and capabilities for Cloud-based software development.

As such, the use cases formed the basis for the validation testing to be carried for

both the early prototype and full prototype of the SmartCLIDE IDE.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 10

 Confidentiality: Public

As an update to the earlier validation planning deliverable D4.1 scheduled at M19

addressing a subset of the planned capabilities, this deliverable addresses the

validation of the entirety of the high priority industrial requirements established early

in the project by the Pilot Case partners. The same methods described in the earlier

report are again applied, but the validation testing is substantially more extensive as

all of the planned features of the SmartCLIDE IDE will have been fully

implemented. A further deliverable D5.1 – Assessment Methodology, will specify the

quantitative measures that will be applied to assess the business, operational and

other improvements provided by the final project technologies across a set of

performance indicators and targets collected from the Pilot Cases. This deliverable

will be complemented by D5.2 Specification of pilot scenarios and assessment

planning, which describes the scenarios Pilot Case partners will utilise to evaluate

the performance indicators.

1.5 Structure of this document

This deliverable is structured as follows:

 Section 2 – describes the validation environments and validation test runs of

the full SmartCLIDE prototype to be carried out by each Pilot Case partner.

 Section 3 – presents the bug tracking procedures to be followed by the Pilot

Case partner validation teams to capture issues to be addressed during the final

prototype developments to be completed by the end of the project.

 Section 4 – summarises the KPIs, targets, assessment methods, and focus areas

for each of the Pilot Cases for the eventual quantitative impact assessment of

the full prototype. These are provided for consideration during validation

testing to enable detection of potential shortcomings or limitations that might

prevent impact targets from being achieved by the full prototype.

Concluding remarks are provided and sources for additional information are

footnoted throughout the document.

1.6 Contributors

The Pilot Case partners CONTACT, INTRA, UNP and WT have been the main

contributors to this deliverable identifying the environments and test runs that will be

utilised for validating the full prototype of the SmartCLIDE IDE. TOG has

contributed the methodologies and procedures, and has acted as overall editor for this

deliverable.

2 Validation Test Cases

The validation test cases for both the early and full prototype are designed based on

the Functional and Technical Requirements (D1.2), and the Use Case Scenarios

(D1.3). As the full prototype of the SmartCLIDE solution (D4.4) provides a complete

of the functionalities targeted by the project, all of the Pilot Case Scenarios are

represented for validation purposes. The validation testing focuses on providing

industrial feedback and guidance to the final prototype (D4.5) at the end of the

project based on the test cases applied to the full prototype functionalities.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 11

 Confidentiality: Public

The collection use cases that are expected to be operational form the validation Test

Runs that will be implemented by each Pilot Case partner in collaboration with the

R&D partners. The test runs and functionalities to be validated are summarised in

Table 1.

Table 1: SmartCLIDE capabilities focus for Pilot Case validations

Pilot Case Full Prototype Validation Test Runs

Intrasoft Design and development functionalities

Test optimisation and deployment

Improve code quality of service

Assess performance of deployed services

Wellness Telecom Customized deployment

Service management

QoS Monitoring

Scaling of the Communication Platform

Unparallel Innovation Creation of services

Classification of services

Estimate deployment costs

CONTACT Software Collaborative development

Performance analysis

Improve code quality of service

It should be noted that the Test Runs specified by each Pilot Case partner are based

on current understanding of features planned for inclusion in the full prototype of the

SmartCLIDE IDE. It is possible some individual tests within a test run may need to

be adapted for use with the full prototype depending on the maturity or small

variances in the specifics of the implementation of the feature.

The following describes the detailed Test Runs that will be used by each Pilot Case

partner for the validation testing of the full prototype of the SmartCLIDE solution.

2.1 Intrasoft International Pilot Case validation

A frequent problem in designing and developing software products at INTRASOFT

among separate and geographically distributed developer teams is to ease the design

and code development process, optimize collaboration among the team members,

and to optimise the design, development and testing time. In this scenario, which is

an extensive one, using SmartCLIDE capabilities for code/service re-use, service

discovery, language support, and service discovery from external sources, along with

debugging and cost analysis reports.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 12

 Confidentiality: Public

2.1.1 Validation Environment

A subset of specific Pilot Cases and Use Case Scenarios have been carefully

identified and selected for the role of carrying out the testing and validation of the

core SmartCLIDE environment and its capabilities.

The whole set of use case scenarios embraces a flow from the need to develop and

design a new functionality to testing, deployment, and support. This new

functionality or this service can also begin with a template or use a discovery service

to fetch it. Next, we have the optimization, deployment, and testing cases that will be

performed on top of the service. Last follows the use cases that involve reporting

tools, security, and repository access.

More specifically the selected Use Cases and scenarios will cover the testing of the

following SmartCLIDE services and its components, which will be included in the

validation environment

 Service Creation, Composition and Testing component.

 Discovery of services component

 Security component

 Run-time Simulation & Monitoring / Visualisation component

 User interface component

 Service deployment component

The common environment provided for the full prototype of SmartCLIDE is deemed

suitable for the purposes of these validation tests, since there is no requirement to

integrate with PERSEUS-specific components to validate the prototype. The following

summarises the Test Runs that will be executed for validating the full prototype of the

SmartCLIDE solution.

2.1.2 Test Run 1: Design and development functionalities

Test Name IS-0001 Creation of a service from a template

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to create a new service for an existing system

or a completely new one.

Preconditions

None. It should always be possible to create a new service from a

template. If service templates are provided as an additional

plugin, it has to be installed.

Normal Flow

Description
1. The developer has a service for a certain purpose in mind.

2. The developer navigates to the template repository

3. The developer chooses an adequate template of a sortable

list (e.g. by filtering meta data)

Postconditions The system provides the developer with a code skeleton of the

chosen service (in a new or existing tag/ file)

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 13

 Confidentiality: Public

Test Name IS-0002 Create services with data abstraction levels

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to implement a set of services (e.g. a database

system) and abstract data from said services.

Preconditions None. It should always be possible to create new services.

Normal Flow

Description
1. The developer composes a set of services.

2. The developer defines the abstraction of data (e.g. data

flows, data formats) from the implemented services with

the help of the system (e.g. tool tips, auto-completions)

Postconditions A set of services with the desired data abstraction levels (data

flows, input and output formats) has been created.

Alternative Flows and Exceptions

1. The services already exist and may even be in use.

2. SmartCLIDE provides the developer with help to create

data abstraction for the services.

Test Name IS-0003 Create and deploy a service from the IDE

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to create a new service for an existing system

or a completely new system one using command line tools.

Preconditions

Necessary packages installed on the host in order to provide

SmartCLIDE with the ability to use them. In addition to that, all

necessary tools for a local Kubernetes instance are installed.

Normal Flow

Description
1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify the

written code with an installed linter(e.g. using Pylint for

Python code)

3. The developer uses the built-in functionality to deploy the

new service (whilst providing SmartCLIDE with a valid

configuration) with kubectl in a local Kubernetes

environment.

Postconditions The service has been successfully deployed.

Alternative Flows ant Exceptions

1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify the

written code (e.g. using Pylint for Python code)

3. The developer uses the built-in functionality to deploy the

new service with kubectl using a saved configuration

within SmartCLIDE

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 14

 Confidentiality: Public

Test Name IS-0004 Discover resources and services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers
A SmartCLIDE user wants to discover existing services of a

system.

Preconditions
A system that consists of one or more services is deployed/ in use

or just known to SmartCLIDE (via the registry).

Normal Flow

Description
1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data into the search engine (e.g.

credentials, type of service/ resource) and specifies that he/

she wants to search through the REST API

3. The user uses SmartCLIDE to search for services and

resources

Postconditions SmartCLIDE provides the user with an overview of services and

resources within the searched system

Alternative Flows and Exceptions

1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data (e.g. credentials, type of

service/ resource) into the search engine and specifies a

URL (or a rancher namespace) to be searched.

3. The user uses Smart CLIDE to search for services and

resources.

1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data into the search engine (e.g.

credentials) and specifies that he/ she wants to search

through the REST API

3. The user uses SmartCLIDE to search for services and

resources

4. After the initial search, the user switches to a

configuration of another environment (e.g. another

Kubernetes cluster)

Test Name IS-0005 Search for deployed services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers The user wants to look up already deployed services.

Preconditions
Several services have been implemented and deployed via

SmartCLIDE.

Normal Flow
Description

1. The user navigates to the SmartCLIDE registry (e.g. via a

tool bar)

2. The user filters the registry in order to specify the search

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 15

 Confidentiality: Public

Test Name IS-0005 Search for deployed services

results

Postconditions SmartCLIDE provides the user with a list of deployed services

based on the inputs/ filters given by the user.

Alternative Flows and Exceptions

1. The user uses the built-in command line tool to look up

deployed services.

2. The user specifies additional arguments to the command

line call to filter the search results.

Test Name
IS-0006 A non-expert user creates a new service with

assistance

Actors Non-trained user (SmartCLIDE user)

Triggers
A non-trained user wants to create a new service or add a service

to an existing system.

Preconditions None.

Normal Flow

Description
1. The user has a service for a certain purpose in mind.

2. The user navigates to the template repository.

3. The user chooses an adequate template of a sortable list

(e.g. by filtering meta data). SmartCLIDE provides short

documentation to each template (description, purpose

etc.)

4. The user adds the necessary specifics to the template

code, SmartCLIDE provides tips and possible solutions

via the auto-complete feature.

Postconditions A ready to deploy service is created from the process.

Alternative Flows and Exceptions

1. The user navigates to the SmartCLIDE registry of

deployed services.

2. The user selects the system to which a service should be

added.

3. SmartCLIDE provides the user with an overview of the

system and its dependencies (maybe even some sort of

documentation).

4. The user navigates to the template repository.

5. The user chooses an adequate template of a sortable list

(e.g. by filtering meta data). SmartCLIDE provides short

documentation to each template (description, purpose

etc.)

6. The user adds the necessary specifics to the template

code, SmartCLIDE provides tips and possible solutions

via the auto-complete feature.

7. The user deploys the created service to the existing

system.

8. Additional postcondition: The deployed service finds its

way into SmartCLIDE‟s service registry.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 16

 Confidentiality: Public

Test Name IS-0008 Test services from within SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers The user wants to test already existing services.

Preconditions

One or more services and corresponding tests already exist. The

needed command line tool to execute the tests is installed on the

host.

Normal Flow

Description
1. The user uses the built-in command line of SmartCLIDE

to execute the written tests.

2. The command line prints the results.

Postconditions SmartCLIDE marks the service(s) as tested or adds the test

coverage to the meta data of the service.

Test Name IS-0015 Accessing Git repositories

Actors Developer (SmartCLIDE User)

Triggers
The developer wants to push changes made to an existing service

or a new file to a Git repository.

Preconditions
The necessary tools (e.g. Git bash) are installed on the host, the

source code has been cloned.

Normal Flow

Description
1. The user makes changes to an existing service.

2. The user saves the file.

3. The user commits the changes via the built-in CLI.

4. The user pushes the commits to a remote repository via

the built-in CLI.

Postconditions The commits have been successfully pushed to the defined

repository.

Alternative Flows and Exceptions

1. The user makes changes to an existing service.

2. The user saves the file.

3. The user uses the context menu to commit the changes.

4. A window pops up, in which the user enters the commit

message.

5. The user uses the context menu to push the commits to a

remote repository.

6. A window pops up if the repository is private and no

credentials are available.

Test Name IS-0018 Language support

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

Triggers A user wants to create a new service or change an existing one.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 17

 Confidentiality: Public

Test Name IS-0018 Language support

Preconditions
If needed additional language support packages need to be

installed.

Normal Flow

Description
1. The user creates a new file.

2. The user implements the desired solution, while

SmartCLIDE provides the syntax highlighting.

Postconditions SmartCLIDE shows support for the selected language by showing

correct highlighting of syntax.

Alternative Flows and Exceptions

1. The user opens an existing file.

2. The syntax of the code is automatically correctly

highlighted.

3. The user implements the changes.

Test Name IS-0019 Access SmartCLIDE via a browser

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

Triggers
A user wants to access SmartCLIDE from within a browser, since

it might not be installed on the local machine.

Preconditions

A SmartCLIDE container or virtual machine has to be deployed

somewhere reachable (local docker container, remote access to

virtual machine etc.)

Normal Flow

Description
1. The user opens a browser.

2. The user navigates to the correct url and opens

SmartCLIDE

Postconditions All of SmartCLIDE‟s functionality is available via the web

interface.

Test Name IS-0020 Specify the licence of a service

Actors Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to specify the license of a service without knowing,

which one would be appropriate.

Preconditions An implemented service exists without any license specified.

Normal Flow Description
1. The user opens the source code of the service (one file).

2. The user navigates to the license mechanism of

SmartCLIDE.

3. The user filters the possible licenses by providing

information regarding the service (purpose, commercial or

not)

4. The user chooses a license based on the suggestion of

SmartCLIDE

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 18

 Confidentiality: Public

Test Name IS-0020 Specify the licence of a service

Postconditions The license is inserted at the top of the service‟s source code.

Test Name IS-0027 Measuring and debugging SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to debug SmartCLIDE or look at usage metrics.

Preconditions The logging has to be activated and set to the necessary level.

Normal Flow

Description
1. The user takes a look at the recent logs SmartCLIDE has

written. The debug level may be changed at runtime.

2. The user opens SmartCLIDE and navigates to the usage

data section.

Postconditions SmartCLIDE provides the user with a set of metrics gathered from

normal usage.

2.1.3 Test Run 2: Test optimisation and deployment

Related Tests: IS-0005 Search for deployed services and IS-0008 Test services from

within SmartCLIDE

Test Name IS-0010 Deploy a service from the CLI within SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers

A user wants to deploy an already implemented service via

SmartCLIDE. The necessary tools (e.g. Kubectl, AWS, Helm,

Docker) are installed.

Preconditions A service ready to be deployed exists.

Normal Flow

Description
1. The user navigates to the built-in command line interface.

2. The user provides the system with a valid configuration or

uses a saved one within SmartCLIDE.

3. The user deploys the implemented service via the CLI.

Postconditions The service has been deployed accordingly.

Test Name IS-0017 Ask for changes in SmartCLIDE

Actors
Quality Manager (SmartCLIDE User), IT Administrator

(SmartCLIDE User)

Triggers A user finds a bug or wants to demand a new feature.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 19

 Confidentiality: Public

Test Name IS-0017 Ask for changes in SmartCLIDE

Preconditions None.

Normal Flow

Description
1. The user goes online and visits the public repository of

SmartCLIDE

2. The user navigates to the issue tracker

3. The user creates a new issue and states what is faulty or

what change is wanted.

Postconditions A new issue is created and the maintainers of the repository are

notified.

Test Name IS-0024 Use SmartCLIDE’s container repository

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to upload a Docker image and share it.

Preconditions A Docker image has to exist.

Normal Flow

Description
1. The user opens SmartCLIDE and navigates to the built-in

container registry.

2. The user uploads a local docker image to the registry.

Postconditions The Docker image has been uploaded and is available for other

users.

Alternative Flows and Exceptions
1. In addition to the normal flow: Another user pulls the

recently uploaded image locally.

Test Name IS-0026 Create secure services with authentication

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to create a secure service or a set of secure services.

Preconditions -

Normal Flow

Description
1. The user implements a service.

2. The user adds configuration to said service including an

authentication method with the assistance of SmartCLIDE.

Postconditions The service is ready to use, a potential user has to provide valid

credentials to use its functionality.

Alternative Flows and Exceptions

1. The user implements a set of services with several security

measures such as authentication, https communication etc.

with the assistance of SmartCLIDE.

2. The user deploys the services.

3. The services communicate with each other using secure

protocols and provided credentials are always passed

encrypted.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 20

 Confidentiality: Public

2.1.4 Test Run 3: Improve code quality of a service

Related Tests: IS-0008 Test services from within SmartCLIDE and IS-0015

Accessing Git repositories

Test Name IS-0018 Language support

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

Triggers A user wants to create a new service or change an existing one.

Preconditions
If needed additional language support packages need to be

installed.

Normal Flow

Description
1. The user creates a new file.

2. The user implements the desired solution, while

SmartCLIDE provides the syntax highlighting.

Postconditions -

Alternative Flows and Exceptions

1. The user opens an existing file.

2. The syntax of the code is automatically highlighted

correctly.

3. The user implements the changes.

Test Name IS-0027 Measuring and debugging SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to debug SmartCLIDE or look at usage metrics.

Preconditions The logging has to be activated and set to the necessary level.

Normal Flow

Description
1. The user takes a look at the recent logs SmartCLIDE has

written. The debug level may be changed at runtime.

2. The user opens SmartCLIDE and navigates to the usage

data section.

3. SmartCLIDE provides the user with a set of metrics

gathered from normal usage.

Postconditions -

2.1.5 Test Run 4: Assess performance of deployed service(s)

Related Tests: IS-0004 Discover resources and services and IS-0005 Search for

deployed services

Test Name IS-0009 Conduct a cost analysis

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 21

 Confidentiality: Public

Test Name IS-0009 Conduct a cost analysis

Triggers

The user wants to have an estimation of operating costs if the

system under inspection would be deployed as a productive

system.

Preconditions
An existing system consisting of one or more services that is ready

for deployment.

Normal Flow

Description
1. The user uses the service registry of SmartCLIDE to filter

the services needed for the system to be deployed and

functional.

2. The user selects the target environment (such as cloud

provider).

3. The user selects all of the needed services or the system as

a whole.

4. The user checks whether the meta data of the system/

services is sufficient to conduct a cost analysis (maybe

warnings or tool tips from SmartCLIDE to assist with that)

5. The user conducts the actual cost analysis.

Postconditions SmartCLIDE provides the user with an overview of costs the

system would cause as a whole and also a breakdown of the costs

for each service individually. Listed costs consist of items

regarding RAM, storage, CPU, usage frequency etc.

Alternative Flows and Exceptions

1. A workflow for the desired functionality is already in

place.

2. The user triggers a cost analysis via SmartCLIDE.

Test Name IS-0025 Monitor and verify services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to monitor deployed services.

Preconditions A deployment of a set of services exists.

Normal Flow

Description
1. The user opens SmartCLIDE and navigates to the

deployed system.

2. SmartCLIDE provides the user with live information of

the deployed services.

3. The user selects the information to be monitored.

Postconditions The desired information are gathered and displayed to the user.

Alternative Flows and Exceptions

1. In addition to the normal flow: The user defines thresholds

for different metrics of the system (CPU workload, HDD

capacity etc.).

2. SmartCLIDE notifies the user if thresholds are broken or

failures occur.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 22

 Confidentiality: Public

2.2 Wellness Telecom Pilot Case validation

WTs use of SmartCLIDE focused on a Real-Time Communication Platform where

the new project technologies are expected to be used to discover and deploy the

Real-Time Communication Platform. In particular, the evaluations of the full

prototype will include both the management and monitoring of a running instance of

the Real-Time Communication Platform. The Real-Time Communication Platform is

composed by several containerized instances that may be replicated for scalability

purposes. The motivation for WT is to jointly develop tools so that the user can

intuitively specify the needs of the application, deploy the applications, and adapt the

infrastructure to changing needs automatically or under the supervision of WT

personnel.

2.2.1 Validation Environment

The validation environment will make use of the main components associated with

the Real-Time Communication Platform. In particular, these are:

 Application and infrastructure programming and control model

 Application development tools – IDE: Interactive Development Environment.

 Tools for application deployment – DRIP: Distributed Real-time Infrastructure

Planner.

 Tools to enable automatic adaptability – ASAP: Autonomous Self-Adaptation

Platform.

Figure 1 illustrates the relations between SmartCLIDE and WTs Pilot Case that

focuses on the Real-Time Communication Platform. The validation testing of

SmartCLIDE prototype will be used to carry out the following tasks:

 Discover and deploy the Real-Time Communication Platform

 Manage a running instance of the Real-Time Communication Platform

 Monitor a running instance of the Real-Time Communication Platform

The Real-Time Communication Platform is composed by several containerized

instances that may be replicated for scalability purposes.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 23

 Confidentiality: Public

Figure 1: Relations between SmartCLIDE and Pilot Case

The WT system design makes it possible to easily integrate with the SmartCLIDE

environment. SmartCLIDE interacts with the Unified Communication system

adapting the reliability of the system given a QoS and QoE. The adaptability will

depend on the demand of the functionalities used by the user. The dynamic condition

will define the scalability of the system according to the metrics monitored by the

system. The vertical scalability is assumed by Docker and the horizontal scalability is

defined by the SmartCLIDE environment.

The SmartCLIDE system will interact with Pilot Case system is the following way:

IDE:

 Implement the WT infrastructure.

 Define the parameter QoS and QoE.

 Parameter for scaling the RTP proxy.

DRIP:

 Deploy the infrastructure according to the definition of the use of case.

 Deploy the containers and monitors defined by the IDE.

ASAP:

 Measure the general parameters: CPU, RAM, Tx Packet, etc.

 And the specific WT use case parameter: RTP Proxy ports.

The metrics collected by ASAP are used by DRIP and ASAP for scaling the

containers. The general metrics and criteria are used by the system applicable to all

pilot use cases, where the requirements are more focused in technical specification of

the system, for instance: containers requirement, network requirement or pipeline

requirement among other.

The following summarises the Test Runs that will be executed for validating the full

prototype of the SmartCLIDE solution.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 24

 Confidentiality: Public

2.2.2 Test Run 1: Customised deployment

Test Name WT-0003 Create and deploy a service from the IDE

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to create a new service for an existing system

or a completely new system one using command line tools.

Preconditions

Necessary packages installed on the host to provide SmartCLIDE

with the ability to use them. In addition to that, all necessary tools

for a local Kubernetes instance are installed.

Normal Flow

Description
1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify the

written code with an installed linter(e.g. using Pylint for

Python code)

3. The developer uses the built-in functionality to deploy

the new service (whilst providing SmartCLIDE with a

valid configuration) with kubectl in a local Kubernetes

environment.

Postconditions The service has been successfully deployed.

Alternative Flows and Exceptions

1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify the

written code (e.g. using Pylint for Python code)

3. The developer uses the built-in functionality to deploy

the new service with kubectl using a saved configuration

within SmartCLIDE

Test Name WT-0010 Deploy a service from the CLI within SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers

A user wants to deploy an already implemented service via

SmartCLIDE. The necessary tools (e.g. Kubectl, AWS, Helm,

Docker) are installed.

Preconditions A service ready to be deployed exists.

Normal Flow

Description
1. The user navigates to the built-in command line interface.

2. The user provides the system with a valid configuration

or uses a saved one within SmartCLIDE

3. The user deploys the implemented service via the CLI

Postconditions The service has been deployed accordingly.

Test Name WT-0011 Create a system using low-code programming

Actors Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 25

 Confidentiality: Public

Test Name WT-0011 Create a system using low-code programming

User)

Triggers
A user with limited programming knowledge wants to create a

service, which is deployable.

Preconditions -

Normal Flow

Description
1. The user navigates to the modelling canvas of

SmartCLIDE.

2. The user 'draws' a service using premade functional and

decision blocks.

3. The user is able to change the configuration of the service

via a graphical interface.

4. SmartCLIDE supports the user with tool tips and

documentation at runtime (to determine whether the

service would be functional).

5. The user provides the system with a valid configuration

or uses a saved one within SmartCLIDE.

Postconditions The system has generated the needed source code and the service

is ready for deployment.

Test Name WT-0012 Create a complex scenario from templates

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers

A user with limited programming knowledge wants to create a

more complex system, consisting of multiple services, which is

deployable.

Preconditions -

Normal Flow

Description
1. The user navigates to the modelling canvas of

SmartCLIDE.

2. The user chooses a system template (consisting of one or

more services).

3. The system is graphically displayed on the canvas

4. The user models the system on the canvas according to its

needs.

5. SmartCLIDE supports the user with tool tips and

documentation at runtime (to determine whether the

system would be functional).

Postconditions SmartCLIDE has generated the needed source code and the system

is ready for deployment.

2.2.3 Test Run 2: Service management

Test Name WT-0004 Discover resources and services

Actors Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 26

 Confidentiality: Public

Test Name WT-0004 Discover resources and services

User)

Triggers
A SmartCLIDE user wants to discover existing services of a

system.

Preconditions
A system that consists of one or more services is deployed/ in use

or just known to SmartCLIDE (via the registry).

Normal Flow

Description
1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data into the search engine (e.g.

credentials, type of service/ resource) and specifies that

he/ she wants to search through the REST API

3. The user uses SmartCLIDE to search for services and

resources

Postconditions SmartCLIDE provides the user with an overview of services and

resources within the searched system

Alternative Flows and Exceptions

1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data (e.g. credentials, type of

service/ resource) into the search engine and specifies a

URL (or a rancher namespace) to be searched.

3. The user uses Smart CLIDE to search for services and

resources.

4. The user starts SmartCLIDE and navigates to its search

engine

5. The user inputs necessary data into the search engine (e.g.

credentials) and specifies that he/ she wants to search

through the REST API

6. The user uses SmartCLIDE to search for services and

resources

7. After the initial search, the user switches to a

configuration of another environment (e.g. another

Kubernetes cluster)

Test Name WT-0005 Search for deployed services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers The user wants to look up already deployed services.

Preconditions
Several services have been implemented and deployed via

SmartCLIDE.

Normal Flow

Description
1. The user navigates to the SmartCLIDE registry (e.g. via a

tool bar)

2. The user filters the registry in order to specify the search

results

Postconditions SmartCLIDE provides the user with a list of deployed services

based on the inputs/ filters given by the user.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 27

 Confidentiality: Public

Test Name WT-0005 Search for deployed services

Alternative Flows and Exceptions

1. The user uses the built-in command line tool to look up

deployed services.

2. The user specifies additional arguments to the command

line call to filter the search results.

2.2.4 Test Run 3: QoS monitoring

Test Name WT-0021 Define and configure QoS

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers
A user wants to define or evaluate QoS configurations regarding

resources.

Preconditions At least one ready implemented service exists.

Normal Flow

Description
1. The user defines the configuration of a service with the

use of functional blocks provided by SmartCLIDE.

2. The user specifies additional dependencies and QoS

constraints to other services.

Postconditions The added configuration is shown within the meta data of the

services and is shown on the modelling canvas.

Alternative Flows and Exceptions

1. Given a set of services with dependencies and SLAs

exists.

2. The user opens the modelling canvas and lets

SmartCLIDE evaluate the given system regarding its

resource requirements.

3. SmartCLIDE provides the user with information on what

resources are needed to fulfil the requirements and

maintain the desired QoS.

Test Name WT-0023 Analyse a system and clean its data

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to clean the data of a system.

Preconditions
The system is already deployed and SmartCLIDE has been

analysing and classifying it with all its resources.

Normal Flow

Description
1. The user opens SmartCLIDE and navigates to the

overview of the existing system.

2. SmartCLIDE shows a classification of the resources and

services in place.

3. The user uses the SmartCLIDE functionality to clean the

data from the system‟s experience.

Postconditions The data sets are cleaned and may be used for training a predictive

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 28

 Confidentiality: Public

Test Name WT-0023 Analyse a system and clean its data

data model.

Test Name WT-0025 Monitor and verify services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to monitor deployed services.

Preconditions A deployment of a set of services exists.

Normal Flow

Description
1. The user opens SmartCLIDE and navigates to the

deployed system.

2. SmartCLIDE provides the user with live information of

the deployed services.

3. The user selects the information to be monitored.

Postconditions The desired information are gathered and displayed to the user.

Alternative Flows and Exceptions

1. In addition to the normal flow: The user defines

thresholds for different metrics of the system (CPU

workload, HDD capacity etc.).

2. SmartCLIDE notifies the user if thresholds are broken or

failures occur.

Test Name WT-0027 Measuring and debugging

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to debug SmartCLIDE or look at usage metrics.

Preconditions The logging has to be activated and set to the necessary level.

Normal Flow

Description
1. The user takes a look at the recent logs SmartCLIDE has

written. The debug level may be changed at runtime.

2. The user opens SmartCLIDE and navigates to the usage

data section.

3. SmartCLIDE provides the user with a set of metrics

gathered from normal usage.

4. The user opens SmartCLIDE and navigates to the

deployed system.

Postconditions The desired information are gathered and displayed to the user.

2.2.5 Test Run 4: Scaling of the Communication Platform

Related Tests: WT-0005 Search for deployed services and WT-0012 Create a

complex scenario from templates

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 29

 Confidentiality: Public

Test Name WT-0004 Discover resources and services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to discover existing services of a system.

Preconditions
A system that consists of one or more services is deployed / in use

or just known to SmartCLIDE (via the registry).

Normal Flow

Description
1. The user starts SmartCLIDE and navigates to its search

engine.

2. The user inputs necessary data into the search engine (e.g.

credentials, type of service/ resource) and specifies that

he/ she wants to search through the REST API.

3. The user uses SmartCLIDE to search for services and

resources.

Postconditions SmartCLIDE provides the user with an overview of services and

resources within the searched system

Alternative Flows and Exceptions

1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data (e.g. credentials, type of

service/ resource) into the search engine and specifies a

URL (or a rancher namespace) to be searched.

3. The user uses Smart CLIDE to search for services and

resources.

1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data into the search engine (e.g.

credentials) and specifies that he/ she wants to search

through the REST API

3. The user uses SmartCLIDE to search for services and

resources

4. After the initial search, the user switches to a

configuration of another environment (e.g. another

Kubernetes cluster)

Test Name WT-0014 Visualising services and data flows

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

Triggers
The user wants to have a graphical overview of an existing system

or service.

Preconditions One or more services and at least one system exist.

Normal Flow

Description
1. The user navigates to the desired service.

2. The user opens the graphical overview of the service.

Postconditions The service is displayed correctly including possible data flows to

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 30

 Confidentiality: Public

Test Name WT-0014 Visualising services and data flows

and from said service.

Alternative Flows and Exceptions

1. The user navigates to the desired system.

2. The user opens the graphical overview of the system.

3. Additional Postcondition 1: The system with all its

services and corresponding data flows is displayed

correctly.

4. The user groups the services within the system. (e.g. by

category, type of data etc.)

5. Additional postcondition 2: The services are grouped

correctly, based on their meta data.

2.3 Unparallel Innovation Pilot Case validations

The final version of the SmartCLIDE solution is expected to support UNP‟s IoT-

Catalogue system by assisting users from the IoT-Catalogue community when they

need to create new services and improve the IoT-Catalogue itself by indexing and

classifying the services inside, thereby providing assistance to UNP to enrich the

services descriptions. For users, IoT-Catalogue will provide an embedded IDE based

on SmartCLIDE aimed at developing applications using software components

described in the IoT-Catalogue itself. The IDE will help to avoid deep technical

requirements related to the implementations. Also, this IDE will have a harmonized

graphic layout matching the one from the IoT-Catalogue, providing a seamless and

fully integrated experience to IoT-Catalogue users.

2.3.1 Validation Environment

The validation environment will focus on the validation of the functional aspects of

SmartCLIDE tools, in order to ensure that they are able to process the required

information. This implies that SmartCLIDE tools will be tested with IoT domain

applications and services. The services to be used on this Use Case are indexed and

modelled on the IoT-Catalogue. IoT-Catalogue provides a REST API that provides

data about the indexed services and can be used by SmartCLIDE service indexing

tools to analyse them to allow their usage for the development of IoT applications.

An example of some services that IoT-Catalogue can provide to SmartCLIDE is

represented in Table 2. Services are grouped under three types:

 Data Source – services that provide data sets.

 Processing – services that perform any type of processing over the data.

 Visualization – services that provide mechanism to visualize specific

dimensions of the data.

For each service the name is provided, the endpoint used to access the service, the

type, and a brief description.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 31

 Confidentiality: Public

Table 2: IoT-Catalogue Services for use with SmartCLIDE

Name URL Type Description

BigML https://bigml.c

om/api

Processing BigML.io is a Machine Learning REST

API to easily build, run, and bring

predictive models to your project. You

can use BigML.io for basic supervised

and unsupervised machine learning

tasks and also to create sophisticated

machine learning pipelines.

Google Cloud

- Bigquery

https://cloud.g

oogle.com/big

query/docs/refe

rence/libraries-

overview

Processing BigQuery is Google Cloud's fully

managed, petabyte-scale, and cost-

effective analytics data warehouse that

lets you run analytics over vast amounts

of data in near real time.

Amazon

Forecast

https://docs.aw

s.amazon.com/

forecast/index.

html

Processing Amazon Forecast is a fully managed

deep learning service for time-series

forecasting.

OpenVisionA

PI

https://openvisi

onapi.com/#de

mo

Processing
Open-source computer vision API based

on open source models

World Air

Quality Index

project

https://aqicn.or

g/json-

api/doc/#api-_

Data

Source

Provide information about Air Quality

OpenWeather
https://openwe

athermap.org/a

pi

Data

Source

Provide information about Air

Pollution, geocoding and weather

information

Here API

Traffic

https://develop

er.here.com/do

cumentation/tr

affic/dev_guid

e/topics/what-

is.html

Data

Source

Provide traffic information about a

place

Live Traffic

camera

https://opendat

a.transport.nsw

.gov.au/dataset

/live-traffic-

cameras

Data

Source

The API gives Image URL, GPS

coordinates, and view description of

traffic cameras in GeoJSON format.

Thingspeak
https://thingspe

ak.com/
Visualisatio

n

Visualiser where user can send the

information through api

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 32

 Confidentiality: Public

Name URL Type Description

Weatherunder

ground

https://www.w

underground.c

om

Data

Source/Vis

ualisation

Has information which comes from

weather station deployment across the

world.

Thingsboard
https://thingsbo

ard.io
Data

Source/Pro

cessing/Vis

ualisation

Open-source IoT Platform - Device

management, data collection, processing

and visualization for your IoT solution

Those services can be combined in different ways to implement specific IoT

Applications. For example an application can be developed to identify if there are

any relation between traffic car, air quality, air pollution and temperature in a certain

place. In this case it can be obtained temperature using the Weather Underground

API/OpenWeather API, air quality data can be obtained from the World Air Quality

Index project, Air pollution can be collected from the OpenWeather API and

information about traffic can be retrieved from HERE API Traffic.

Those data sets can be correlated by resorting to Processing services with the ability

to work on a model. Examples of such services are the BigML platform or the

BigQuery presented in Google Cloud. It is also possible to use the available data by

feeding a different type of model and do a forecast with the gathered data using the

Amazon Forecast to, for example, predict how the air quality will evolve in the near

future. To show the results, Visualization services like the Thingspeak can be used.

Another possible IoT application is the live detection of traffic jams by using camera

livestreams. This application can be based on service like the “Live Traffic camera”.

Live feed from this API can be analysed through the OpenVisionAPI, which will

return the density of detected objects and that information can be used to conclude if

there are traffic jams. Visualisation services like the Thingsboard can be used to

show these results.

The following summarises the Test Runs that will be executed for validating the full

prototype of the SmartCLIDE solution.

2.3.2 Test Run 1: Creation of services

Test Name UI-0001 Creation of a service from a template

Actors Developer

Triggers
A developer wants to create a new service for an existing system

or a completely new one.

Preconditions
If service templates are provided as an additional plugin, it has to

be installed.

Normal Flow
Description

1. The developer has a service for a certain purpose in

mind.

2. The developer navigates to the template repository.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 33

 Confidentiality: Public

Test Name UI-0001 Creation of a service from a template

3. The developer chooses an adequate template of a

sortable list (e.g. by filtering meta data).

Postconditions The system provides the developer with a code skeleton of the

chosen service (in a new or existing tag/ file).

Test Name UI-0002 Create services with data abstraction levels

Actors Developer

Triggers
A developer wants to implement a set of services (e.g. a database

system) and abstract data from said services.

Preconditions -

Normal Flow

Description
1. The developer composes a set of services.

2. The developer defines the abstraction of data (e.g. data

flows, data formats) from the implemented services with

the help of the system (e.g. tool tips, auto-completions).

Postconditions A set of services with the desired data abstraction levels (data

flows, input and output formats) has been created.

Test Name
UI-0006 Non-expert user creates a new service with

assistance

Actors Non-trained user

Triggers
A non-trained user wants to create a new service or add a service

to an existing system.

Preconditions -

Normal Flow

Description
1. The user has a service for a certain purpose in mind.

2. The user navigates to the template repository.

3. The user chooses an adequate template of a sortable list

(e.g. by filtering meta data). SmartCLIDE provides

short documentation to each template (description,

purpose etc.)

4. The user adds the necessary specifics to the template

code, SmartCLIDE provides tips and possible solutions

via the auto-complete feature.

Postconditions A ready to deploy service is created in the process.

Test Name UI-0008 Test services from within SmartCLIDE

Actors Developer

Triggers The user wants to test existing services.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 34

 Confidentiality: Public

Test Name UI-0008 Test services from within SmartCLIDE

Preconditions

One or more services and corresponding tests already exist and

are indexed by SmartCLIDE. The tools required for the

execution of the tests are provided in the development

environment.

Normal Flow

Description
1. The user uses the tools provided by SmartCLIDE to

execute the written tests.

2. The test results are shown.

Postconditions SmartCLIDE marks the service(s) as tested.

Test Name UI-0011 Create a system using low-code programming

Actors Non-trained user

Triggers
A user with limited programming knowledge wants to create a

workflow, which is deployable.

Preconditions None.

Normal Flow

Description
1. The user navigates to the SmartCLIDE‟s BPMN editor

2. The user draws a workflow using premade functional

and decision blocks

3. The user changes the configuration of the workflow

through the graphical interface

4. SmartCLIDE supports the user with tool tips and

documentation at runtime (to assess the workflow‟s

functionality

Postconditions The IDE has generated the needed source code and the workflow

is ready for deployment.

Test Name UI-0012 Create a complex scenario from templates

Actors Non-trained user

Triggers

A user with limited programming knowledge wants to create a

more complex system, consisting of multiple services, which is

deployable.

Preconditions -

Normal Flow

Description
1. The user navigates to the SmartCLIDE‟s BPMN editor.

2. The user chooses a system template.

3. The system is graphically displayed on the canvas.

4. The user models the system on SmartCLIDE‟s BPMN

editor according to its needs. Functionalities of existing

services are consumed on the flow.

5. SmartCLIDE supports the user with tool tips and

documentation at runtime (to determine whether the

system would be functional).

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 35

 Confidentiality: Public

Test Name UI-0012 Create a complex scenario from templates

Postconditions SmartCLIDE has generated the needed source code and the system

is ready for deployment.

Test Name UI-0013 Customize colour scheme and graphical elements

Actors Developer, IT Administrator

Triggers
A user dislikes the default colour scheme or the display of certain

elements.

Preconditions -

Normal Flow

Description
1. The user navigates to the SmartCLIDE settings.

2. The user modifies the overall colour scheme of

SmartCLIDE

3. The user changes the display of some graphical

elements (such as icons for services for example).

Postconditions The colour scheme and graphical elements are now displayed

according to the user‟s inputs.

Test Name UI-0014 Visualising workflows

Actors Developer, IT Administrator

Triggers
The user wants to have a graphical overview of an existing

system.

Preconditions One or more services and at least one workflow exist.

Normal Flow

Description
1. The user navigates to the desired workflow and selects

the option to edit it.

2. The SmartCLIDE‟s BPMN editor opens providing the

need tools for visualising and editing the workflows.

Postconditions The workflow is correctly displayed including possible data

flows to and from the said system.

Test Name UI-0015 Accessing Git repositories

Actors Developer

Triggers
The developer accesses a Git repository to create or edit a

workflow.

Preconditions A workflow is stored in a Git repository

Normal Flow

Description
1. The user opens the SmartCLIDE‟s BPMN editor and

selects a workflow to be imported.

2. Workflow diagram is loaded and shown to the User

3. User is able to edit the diagram

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 36

 Confidentiality: Public

Test Name UI-0015 Accessing Git repositories

Postconditions A fully editable workflow is loaded and presented to the user

Test Name UI-0016 Change something on SmartCLIDE itself

Actors Developer

Triggers
A developer wants to change or add functionality of

SmartCLIDE or fix an issue.

Preconditions
The SmartCLIDE code basis needs to be publicly accessible. The

repository includes automated (acceptance) tests

Normal Flow

Description
1. The user clones the SmartCLIDE repository.

2. The user creates a new local branch.

3. The user makes the desired changes.

4. The user commits the changes

5. The user pushes the changes and creates a merge request

for the maintainers to review.

Postconditions A merge request has been created and is available for the

maintainers to review.

Test Name UI-0017 Ask for changes in SmartCLIDE

Actors Developer, IT Administrator

Triggers A user finds a bug or wants to demand a new feature.

Preconditions -

Normal Flow

Description
1. The user goes online and visits the public repository of

SmartCLIDE

2. The user navigates to the issue tracker

3. The user creates a new issue and states what is faulty or

what change is wanted.

Postconditions A new issue is created and the maintainers of the repository are

notified.

Test Name UI-0018 Language support

Actors Developer, Quality Manager, IT Administrator

Triggers A user wants to create a new service or change an existing one.

Preconditions

The Python and JavaScript languages are supported by default. If

needed additional language support packages need to be

installed.

Normal Flow Description 1. The user creates a new file or opens an existing one.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 37

 Confidentiality: Public

Test Name UI-0018 Language support

2. The user implements the desired solution, while

SmartCLIDE provides the syntax highlighting.

Postconditions SmartCLIDE shows support for the selected language by

showing correct syntax highlighting.

Test Name UI-0019 Access SmartCLIDE via a browser

Actors Developer, Quality Manager, IT Administrator

Triggers
A user wants to access SmartCLIDE from within a browser,

since it might not be installed on the local machine.

Preconditions

A SmartCLIDE container or virtual machine has to be deployed

somewhere reachable (local docker container, remote access to

virtual machine etc.)

Normal Flow

Description
1. The user opens a browser.

2. The user navigates to the correct URL and opens

SmartCLIDE.

Postconditions All of SmartCLIDE‟s functionality is available via the web

interface.

Test Name UI-0020 Specify the licence of a service

Actors Developer, Quality Manager

Triggers
A user wants to specify the license of a service without knowing,

which one would be appropriate.

Preconditions An implemented service exists without any license specified.

Normal Flow

Description
1. The user opens the source code of the service.

2. The user navigates to the license mechanism of

SmartCLIDE.

3. The user filters the possible licenses by providing

information regarding the service (purpose, commercial

or not).

4. The user chooses a license based on the suggestion of

SmartCLIDE.

Postconditions The license is inserted at the top of the service‟s source code.

Test Name UI-0022 Usage of a BPMN editor

Actors Developer, Quality Manager, Business Analyst

Triggers A user wants to create a process model in a web browser.

Preconditions Possible third-party BPMN editor

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 38

 Confidentiality: Public

Test Name UI-0022 Usage of a BPMN editor

Normal Flow

Description
1. The user opens SmartCLIDE in a web browser.

2. The user models a business process using a BPMN

editor..

Postconditions The business process is displayed correctly.

Test Name UI-0026 Create secure services with authentication

Actors Developer, Quality Manager

Triggers A user wants to create a secure service or a set of secure services.

Preconditions
The SmartCLIDE code basis needs to be publicly accessible. The

repository includes automated (acceptance) tests

Normal Flow

Description
1. The user implements a service.

2. The user adds support for authentication with the

assistance of SmartCLIDE.

3. The user deploys the service.

Postconditions The service is ready to use, a potential user has to provide valid

credentials to use its functionality.

Test Name UI-0030 Configure an existing service

Actors Developer, Quality Manager

Triggers
The user wants to use an existing service in the workflow being

designed.

Preconditions At least one configurable implemented service exists.

Normal Flow

Description
1. The user selects an existing service which requires some

configurations.

2. The user specifies some configurations of the service.

3. The service is imported to the workflow with the

specified configurations.

Postconditions The service behaviour matches the specified configurations.

Test Name UI-0007 Decompose complex systems into smaller pieces

Actors Developer, Quality Manager

Triggers
A user wants to lower the complexity of a system / problem by

separating it into smaller pieces.

Preconditions

None. The need to decompose a system occurred on the user‟s

side and does not necessarily need anything from the system in

the first place.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 39

 Confidentiality: Public

Test Name UI-0007 Decompose complex systems into smaller pieces

Normal Flow

Description
1. The user imports an existing system, which is known by

SmartCLIDE into the workflow tool.

2. The user uses SmartCLIDE's workflow tools to remodel

the system's parts individually.

3. The user is able to change metadata for the individual

pieces.

4. The user changes flows (e.g. of data, input, output,

dependencies, general process) between the pieces with

the help of the workflow tool and is able to create new

dependencies or flows between the existing pieces.

Postconditions A decomposed overview of the system/ problem exists within

SmartCLIDE

2.3.3 Test Run 2: Classification of services

Related Tests: UI-0015 Accessing Git repositories, UI-0016 Change something on

SmartCLIDE itself, UI-0017 Ask for changes in SmartCLIDE, UI-0018 Language

support, UI-0019 Access SmartCLIDE via a browser and UI-0020 Specify the licence

of a service.

Test Name
UI-0028 Indexing and classification of services from an

external repository

Actors SmartCLIDE backend, External Services Repository

Triggers
SmartCLIDE backend wants to periodically index and classify

existing services from an external repository.

Preconditions
An external repository that contains one or more services for

further processing.

Normal Flow

Description
1. SmartCLIDE accesses a repository in a pre-configured

address.

2. SmartCLIDE obtains a list of services.

3. SmartCLIDE indexes and classifies the received list.

Postconditions An indexed list of services from an external repository classified

by relevant categories.

2.3.4 Test Run 3: Estimate deployment costs

Related Tests: UI-0013 Customize colour scheme and graphical elements, UI-0014

Visualising workflows, UI-0015 Accessing Git repositories, UI-0016 Change

something on SmartCLIDE itself, UI-0017 Ask for changes in SmartCLIDE, UI-0018

Language support, UI-0019 Access SmartCLIDE via a browser and UI-0020 Specify

the licence of a service.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 40

 Confidentiality: Public

Test Name UI-0009 Conduct a cost analysis

Actors Developer, Quality Manager, IT Administrator

Triggers

The user wants to have an estimation of operating costs if the

system under inspection would be deployed in a production

environment.

Preconditions
An existing system consisting of one or more services that is ready

for deployment.

Normal Flow

Description
1. The user uses the service registry of SmartCLIDE to filter

the services needed for the system to be deployed.

2. The user selects the target environment (such as cloud

provider).

3. The user selects all services they want to include in the

costs calculation or the system as a whole.

4. The user checks whether the existing metadata about the

system/ services is sufficient to conduct a cost analysis

(maybe warnings or tool tips from SmartCLIDE to assist

with that).

5. The user conducts the actual cost analysis.

Postconditions SmartCLIDE provides the user with an overview of costs the

system would cause as a whole and also a breakdown of the costs

for each service individually. Listed costs consist of items

regarding RAM, storage, CPU, usage frequency etc.

Test Name UI-0021 Define and configure QoS

Actors Developer, Quality Manager

Triggers
A user wants to define or evaluate QoS configurations regarding

resources.

Preconditions At least one already implemented service exists.

Normal Flow

Description
1. The user defines the configuration of a service with the use

of functional blocks provided by SmartCLIDE.

2. The user specifies additional dependencies and QoS

constraints to other services.

3. User starts the calculation of new deployment costs.

Postconditions The added configuration is shown within the meta data of the

services. User can assess the impact of the QoS constraints in the

deployment costs.

2.4 CONTACT Software Test Runs

The system used for SmartCLIDE validations will mainly be CONTACT Elements

Platform and CONTACT Elements for IoT, since this system consists of a lot of

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 41

 Confidentiality: Public

microservices working together and also uses Eclipse technology. In addition, it is

important to also validate metrics regarding process enhancements made possible by

SmartCLIDE. This will include typical indicators such as time to delivery or average

time being used to work on an issue. Key interests for SmartCLIDE is being able to

more easily involve customers in the definition of new features, enabling their

automatic validation, smart classification of features (i.e. ELEMENT‟s building

blocks), and composition of services to easily enhance existing services or create

new services.

2.4.1 Validation Environment

The validation environment that will be used for testing the full prototype of the

SmartCLIDE solution will include GitLab (used as version control system), GitLab

CI, Docker, Kubernetes, Helm and SonarQube.

All of our packages and applications are managed in an on premise instance of

GitLab, also using GitLab CI to build, test and analyze the software. The separate CI

jobs are executed on Docker and Windows CI runners using Docker images built

beforehand (mostly based on Ubuntu). The Windows runners are all configured the

same to allow comparability and run Windows Server 2016 as the operating system

with additional software installed that provide all the tools necessary for the building

and testing process. The code is analyzed by the sonar-scanner in later jobs of the CI

pipeline and the results are uploaded to the local SonarQube instance. All branches

of all repositories also deploy the current state of the application to an on-premise

Kubernetes cluster mostly using Helm charts.

SmartCLIDE itself will probably either installed on the developer‟s machines

separately or deployed on the cluster centrally and used by the users. For the early

validation, SmartCLIDE will mainly be used by QA and other developer teams that

are yet to be decided. Testing of the use and test cases may either be done on

developer machines with locally running Docker images or deploying images and

services to a dedicated namespace on the company-wide used Kubernetes cluster.

The following summarises the Test Runs that will be executed for validating the full

prototype of the SmartCLIDE solution.

2.4.2 Test Run 1: Collaborative development

Test Name CO-0001 Creation of a service from a template

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to create a new service for an existing system

or a completely new one.

Preconditions

None. It should always be possible to create a new service from

a template. If service templates are provided as an additional

plugin, it has to be installed.

Normal Flow
Description

1. The developer has a service for a certain purpose in

mind.

2. The developer navigates to the template repository

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 42

 Confidentiality: Public

Test Name CO-0001 Creation of a service from a template

3. The developer chooses an adequate template of a

sortable list (e.g. by filtering meta data)

Postconditions The system provides the developer with a code skeleton of the

chosen service (in a new or existing tag/ file)

Test Name CO-0003 Create and deploy a service from the IDE

Actors Developer (SmartCLIDE User)

Triggers
A developer wants to create a new service for an existing system

or a completely new system one using command line tools.

Preconditions

Necessary packages installed on the host in order to provide

SmartCLIDE with the ability to use them. In addition to that, all

necessary tools for a local Kubernetes instance are installed.

Normal Flow

Description
1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify

the written code with an installed linter(e.g. using Pylint

for Python code)

3. The developer uses the built-in functionality to deploy

the new service (whilst providing SmartCLIDE with a

valid configuration) with kubectl in a local Kubernetes

environment.

Postconditions The service has been successfully deployed.

Alternative Flows and Exceptions

1. The developer uses SmartCLIDE to implement a new

service.

2. The developer uses the built-in functionality to verify

the written code (e.g. using Pylint for Python code)

3. The developer uses the built-in functionality to deploy

the new service with kubectl using a saved

configuration within SmartCLIDE

Test Name CO-0004 Discover resources and services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers
A SmartCLIDE user wants to discover existing services of a

system.

Preconditions
A system that consists of one or more services is deployed/ in

use or just known to SmartCLIDE (via the registry).

Normal Flow

Description
1. The user starts SmartCLIDE and navigates to its search

engine

2. The user inputs necessary data into the search engine

(e.g. credentials, type of service/ resource) and specifies

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 43

 Confidentiality: Public

Test Name CO-0004 Discover resources and services

that he/ she wants to search through the REST API

3. The user uses SmartCLIDE to search for services and

resources

Postconditions SmartCLIDE provides the user with an overview of services and

resources within the searched system

Test Name
CO-0006 A non-expert user creates a new service with

assistance

Actors Non-trained user (SmartCLIDE user)

Triggers
A non-trained user wants to create a new service or add a service

to an existing system.

Preconditions None.

Normal Flow

Description
1. The user has a service for a certain purpose in mind.

2. The user navigates to the template repository.

3. The user chooses an adequate template of a sortable list

(e.g. by filtering meta data). SmartCLIDE provides

short documentation to each template (description,

purpose etc.)

4. The user adds the necessary specifics to the template

code, SmartCLIDE provides tips and possible solutions

via the auto-complete feature.

Postconditions A ready to deploy service is created from the process.

Alternative Flows and Exceptions

1. The user navigates to the SmartCLIDE registry of

deployed services.

2. The user selects the system to which a service should be

added.

3. SmartCLIDE provides the user with an overview of the

system and its dependencies (maybe even some sort of

documentation).

4. The user navigates to the template repository.

5. The user chooses an adequate template of a sortable list

(e.g. by filtering meta data). SmartCLIDE provides

short documentation to each template (description,

purpose etc.)

6. The user adds the necessary specifics to the template

code, SmartCLIDE provides tips and possible solutions

via the auto-complete feature.

7. The user deploys the created service to the existing

system.

8. Additional postcondition: The deployed service finds

its way into SmartCLIDE‟s service registry.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 44

 Confidentiality: Public

Test Name CO-0008 Test services from within SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers The user wants to test already existing services.

Preconditions

One or more services and corresponding tests already exist. The

needed command line tool to execute the tests is installed on the

host.

Normal Flow

Description
1. The user uses the built-in command line of SmartCLIDE

to execute the written tests.

2. The command line prints the results.

Postconditions SmartCLIDE marks the service(s) as tested or adds the test

coverage to the meta data of the service.

Test Name CO-0009 Conduct a cost analysis

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User), IT Administrator (SmartCLIDE User)

Triggers

The user wants to have an estimation of operating costs if the

system under inspection would be deployed as a productive

system.

Preconditions
An existing system consisting of one or more services that is ready

for deployment.

Normal Flow

Description
1. The user uses the service registry of SmartCLIDE to filter

the services needed for the system to be deployed and

functional.

2. The user selects the target environment (such as cloud

provider).

3. The user selects all of the needed services or the system as

a whole.

4. The user checks whether the meta data of the system/

services is sufficient to conduct a cost analysis (maybe

warnings or tool tips from SmartCLIDE to assist with that)

5. The user conducts the actual cost analysis.

Postconditions SmartCLIDE provides the user with an overview of costs the

system would cause as a whole and also a breakdown of the costs

for each service individually. Listed costs consist of items

regarding RAM, storage, CPU, usage frequency etc.

Alternative Flows and Exceptions

1. A workflow for the desired functionality is already in

place.

2. The user triggers a cost analysis via SmartCLIDE.

Test Name CO-0011 Create a system using low-code programming

Actors Business Stakeholder (SmartCLIDE User)

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 45

 Confidentiality: Public

Test Name CO-0011 Create a system using low-code programming

Triggers
A user with limited programming knowledge wants to create a

service, which is deployable.

Preconditions None.

Normal Flow

Description
1. The user navigates to the modelling canvas of

SmartCLIDE

2. The user „draws‟ a service using premade functional and

decision blocks.

3. The user is able to change the configuration of the

service via a graphical interface.

Postconditions The drawn service is saved by the system.

Test Name CO-0015 Accessing Git repositories

Actors Developer (SmartCLIDE User)

Triggers
The developer wants to push changes made to an existing

service or a new file to a Git repository.

Preconditions
The necessary tools (e.g. Git bash) are installed on the host, the

source code has been cloned.

Normal Flow

Description
1. The user makes changes to an existing service.

2. The user saves the file.

3. The user commits the changes via the built-in CLI.

4. The user pushes the commits to a remote repository via

the built-in CLI.

Postconditions The commits have been successfully pushed to the defined

repository.

Alternative Flows and Exceptions

1. The user makes changes to an existing service.

2. The user saves the file.

3. The user uses the context menu to commit the changes.

4. A window pops up, in which the user enters the commit

message.

5. The user uses the context menu to push the commits to a

remote repository.

6. A window pops up if the repository is private and no

credentials are available.

2.4.3 Test Run 2: Performance analysis

Related Tests: CO-0004 Discover resources and services.

Test Name CO-0005 Search for deployed services

Actors Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 46

 Confidentiality: Public

Test Name CO-0005 Search for deployed services

User)

Triggers The user wants to look up already deployed services.

Preconditions
Several services have been implemented and deployed via

SmartCLIDE.

Normal Flow

Description
1. The user navigates to the SmartCLIDE registry (e.g. via

a tool bar)

2. The user filters the registry in order to specify the search

results

Postconditions SmartCLIDE provides the user with a list of deployed services

based on the inputs/ filters given by the user.

Alternative Flows and Exceptions

1. The user uses the built-in command line tool to look up

deployed services.

2. The user specifies additional arguments to the command

line call to filter the search results.

Test Name CO-0025 Monitor and verify services

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to monitor deployed services.

Preconditions A deployment of a set of services exists.

Normal Flow

Description
1. The user opens SmartCLIDE and navigates to the

deployed system.

2. SmartCLIDE provides the user with live information of

the deployed services.

3. The user selects the information to be monitored.

Postconditions The desired information are gathered and displayed to the user.

Alternative Flows and Exceptions

1. In addition to the normal flow: The user defines

thresholds for different metrics of the system (CPU

workload, HDD capacity etc.).

2. SmartCLIDE notifies the user if thresholds are broken

or failures occur.

2.4.4 Test Run 3: Improve code quality of service

Related Tests: CO-0001 Creation of a service from a template, CO-0003 Create and

deploy a service from the IDE and CO-0004 Discover resources and services.

Test Name CO-0010 Deploy a service from the CLI within SmartCLIDE

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 47

 Confidentiality: Public

Test Name CO-0010 Deploy a service from the CLI within SmartCLIDE

Triggers

A user wants to deploy an already implemented service via

SmartCLIDE. The necessary tools (e.g. Kubectl, AWS, Helm,

Docker) are installed.

Preconditions A service ready to be deployed exists.

Normal Flow

Description
1. The user navigates to the built-in command line

interface.

2. The user provides the system with a valid configuration

or uses a saved one within SmartCLIDE.

3. The user deploys the implemented service via the CLI.

Postconditions The service has been deployed accordingly.

Test Name CO-0012 Create a complex scenario from templates

Actors Business Stakeholder (SmartCLIDE User)

Triggers

A user with limited programming knowledge wants to create a

more complex system, consisting of multiple services, which is

deployable.

Preconditions

A valid configuration to deploy a system to a cloud service or

cluster exists. (This would be needed to fill certain variables to

make the system actually deployable)

Normal Flow

Description
1. The user navigates to the modelling canvas of

SmartCLIDE.

2. The user chooses a system template (consisting of one or

more services).

3. The system is graphically displayed on the canvas

4. The user models the system on the canvas according to its

needs.

5. SmartCLIDE supports the user with tool tips and

documentation at runtime (to determine whether the

system would be functional).

Postconditions SmartCLIDE has generated the needed source code and the system

is ready for deployment.

Test Name CO-0024 Use SmartCLIDE’s container repository

Actors
Developer (SmartCLIDE User), Quality Manager (SmartCLIDE

User)

Triggers A user wants to upload a Docker image and share it.

Preconditions A Docker image has to exist.

Normal Flow
Description

1. The user opens SmartCLIDE and navigates to the built-

in container registry.

2. The user uploads a local Docker image to the registry.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 48

 Confidentiality: Public

Test Name CO-0024 Use SmartCLIDE’s container repository

Postconditions The Docker image has been uploaded and is available for other

users.

Alternative Flows and Exceptions
1. In addition to the normal flow: Another user pulls the

recently uploaded image locally.

3 Bug Tracking

During the validation procedures, Pilot Case partners will utilise GitHub for

reporting bugs and issues with the full prototype delivery of the SmartCLIDE

technologies. Every Pilot Case team member is able to register new issues in GitHub

during each validation cycle (see Figure 2).

Figure 2: Issue Creation Form in GitHub

The category of issues to be reported by Pilot Case partners are defined in alignment

with the project‟s agile software development methodology. In particular, each Pilot

Case team member will be able to create the following types of issues:

 User Stories – are used for the definition of needed functional or technical

features discovered during the validation testing. User stories are requested to

the research and development team from the perspective of an end user of the

SmartCLIDE IDE represented capabilities needed to achieve expected

outcomes.

 Epics – represent large bodies of work that can typically be broken down into a

number of smaller elements (i.e. User Stories). They would be expected to be

less common from validation testing and they represent substantial increases in

technical or functional capabilities to achieve outcomes expected by

SmartCLIDE IDE end users.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 49

 Confidentiality: Public

 Bugs – represent errors found in the use of the SmartCLIDE IDE or other

elements (e.g. installation) which should be corrected as part of the final

prototype development at the end of the project.

Every issue reported shall include the following information:

 Originating Pilot Case

 Pilot Case team member reporting the issue

 Specific component or set of components that were in use during the validation

testing when the issue was identified

 The Pilot Case validation test run being executed (if applicable) when the issue

was identified

 Capability, benefit, or innovation expected from the SmartCLIDE IDE that is

either unavailable, obfuscated or limited in scope due to the issue

By reporting issues in GitHub, the SmartCLIDE Pilot Case partners and research and

development team members will ensure that:

 Problems at any stage of the validation process are documented and can be

corrected and used for process improvement;

 Reported issues and their associated corrective actions are implemented in

accordance with Pilot Case partner approved solutions;

 Feedback is provided to the technical teams and the Pilot Case team members

of issue status, and

 Data is provided for measuring and predicting the degree to which the

SmartCLIDE IDE is providing the right features and capabilities to the

representative end users.

Monitoring of issues with respect to any new issues introduced, progress in resolving

open issues, and any requested or implied design or development implications will be

discussed at each of the regular research and development team conference calls.

4 Performance Indicators and Targets

The SmartCLIDE workplan distinguishes between validation testing of the early and

full prototypes (WP4) and assessment (WP5) of the final SmartCLIDE IDE. The

latter addresses the effectiveness of the new platform in providing measurable

business, operational and organisational benefits for each of the industrial Pilot Case

partners. The tasks under WP4 validate that project technologies provide the features

and capabilities that are needed (i.e. the right product was developed), while the tasks

under WP5 set out to quantify the impact of those features and capabilities by

specifying and implementing Assessment Scenarios designed to measure the Key

Performance Indicators (KPI) for each Pilot Case.

In carrying out the validations under WP4 as described in Section 2, it is important

for Pilot Case partners to take into consideration the overall KPIs established for the

project and to identify in the validation process any issues concerning features and

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 50

 Confidentiality: Public

functions that might limit or prevent the project from achieving the targets

established for each KPI. The KPIs, targets to be achieved, and the focus area of each

Pilot Case for the assessments to be carried out under WP5 are summarised in Table

3.

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 51

Confidentiality: Public

Table 3: Pilot Case KPIs, Targets, Assessment Methods and Assessment focus areas

No. Performance Indicator Sufficient Good Excellent Assessment Method

Pilot Case Focus
(P=Primary, S=Secondary)

INTRA WT UNP CNTCT

1 Software components reutilisation rate 35%1 40% 65% Analysing historical projects records and
comparing the results to the project(s)
developed with SmartCLIDE.

P S P S

2 Reduction in number of errors reported (i.e. by type
and stage) as major and minor issues

10% 30% 50% Side-by-side developments with and without
SmartCLIDE.

S S S P

3 Reduction in time for resolving errors 10% 30% 50% Side-by-side developments with and without
SmartCLIDE.

P S S P

4 Reduction in time taken to develop a new
application by non-technical staff (compared to the
traditional learning curve at the company)

5% 20% 30% Comparison of application development by
non-technical staff with and without
SmartCLIDE – based on experiments or
against historical data.

P P P S

5 Reduction in time to deploy a new application or
significant feature requested by an end user

10% 25% 50% Side-by-side developments with and without
SmartCLIDE, or compared against historical
projects data.

P P P S

6 Reduction in lifecycle costs (i.e. specification and
planning, implementation, testing, and deployment)

5% 15% 30% Side-by-side developments with and without
SmartCLIDE.

P P S S

7 Reduction in number of incidents where developed
system was not aligned with user requirements

20% 50% 90% Side-by-side developments with and without
SmartCLIDE.

S P S S

8 Reduction in Cloud services costs due to
optimisation and efficient use of Cloud resources

5% 15% 30% Compare two similar applications developed
with and without SmartCLIDE.

S P P S

9 Increase in the number of security vulnerabilities
detected

10% 15% 25% Side-by-side developments with and without
SmartCLIDE, or compared against historical
projects data.

S P S P

10 Improved transparency, readability and
comprehensibility of software (i.e. by using coding-
by-demonstration principle)

Average
score of
“Some”

Average
score of

“Significant”

Average score
of

“Substantial”

Performing a micro-survey of internal software
development responsibles and averaging their
assessment of improvements using a scale of
None, Some, Significant and Substantial.

S S P S

1
 Current estimated component reutilisation rates noted are INTRA: 30%; WT: 35%; UNP: 25%; CONTACT: 25%

 D4.3 Final Validation Procedure

20.07.2021 Version 2.0 52

 Confidentiality: Public

5 Conclusion

This deliverable has described the validation procedures and specific validation tests

that will be utilised by the Pilot Case partners to validate the full prototype of the

SmartCLIDE solution has provided the needed capabilities for effective Cloud-based

development of industrial applications. The validation environments used by each

Pilot Case partner are representative of industrial software development

environments and commercial applications and through the described Bug Tracking

facilities, will provide important feedback and guidance to the research and

development teams as the final prototype developments are completed by the end of

the project. Overall performance indicators and targets that will form the basis for

the Assessment Scenarios under Workpackage 5 are also noted for due consideration

during the validation testing to identify any bottlenecks or other issues that might

later affect the industrial assessment where the business, operational and other

impacts delivered by the project technologies are quantified by each of the industrial

Pilot Case partners.

	1 Introduction
	1.1 Overview
	1.2 Validation standards and practices
	1.3 Definition of Validation
	1.4 Relationship to other deliverables
	1.5 Structure of this document
	1.6 Contributors

	2 Validation Test Cases
	2.1 Intrasoft International Pilot Case validation
	2.1.1 Validation Environment
	2.1.2 Test Run 1: Design and development functionalities
	2.1.3 Test Run 2: Test optimisation and deployment
	2.1.4 Test Run 3: Improve code quality of a service
	2.1.5 Test Run 4: Assess performance of deployed service(s)

	2.2 Wellness Telecom Pilot Case validation
	2.2.1 Validation Environment
	2.2.2 Test Run 1: Customised deployment
	2.2.3 Test Run 2: Service management
	2.2.4 Test Run 3: QoS monitoring
	2.2.5 Test Run 4: Scaling of the Communication Platform

	2.3 Unparallel Innovation Pilot Case validations
	2.3.1 Validation Environment
	2.3.2 Test Run 1: Creation of services
	2.3.3 Test Run 2: Classification of services
	2.3.4 Test Run 3: Estimate deployment costs

	2.4 CONTACT Software Test Runs
	2.4.1 Validation Environment
	2.4.2 Test Run 1: Collaborative development
	2.4.3 Test Run 2: Performance analysis
	2.4.4 Test Run 3: Improve code quality of service

	3 Bug Tracking
	4 Performance Indicators and Targets
	5 Conclusion

