
This project has received funding from the European Union’s Horizon 2020 research
and Innovation programme under grant agreement No 871177

“The Stairway
 to Cloud”

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License 1

 Content
 1

2
2
3
4
4
4
5
6
6

 8
9

13
18
20
26

 29
30
34
36
40

 42
43
47
54
57
60
66
69
70
72
77
80
82
83

86
89
93

CONTENT ..
Figures...
Tables...
PROJECT CONSORTIUM...
INTRODUCTION...
Context and motivation...
Challenge...
Solution...
Impact..
Benefits for the targeted users..
LET'S LAY THE FOUNDATION..
Cloud Computing in a nutshell...
Machine Learning and Deep Learning: A power couple..
SmartCLIDE: a new cloud-native IDE...
Service Discovery in a Nutshell..
Programming By Example...
OUR SCENARIOS OF USE...
About LoRaWAN communication services..
Enhance IoT-Catalogue with an integrated Cloud IDE...
Provide a Quick Demonstration for a Customer..
Optimizing Resources..
DEEP DIVE..
SmartCLIDE Innovative Approaches..
SmartCLIDE Market Requirements...
SmartCLIDE Service Creation..
SmartCLIDE Deep Learning Engine...
SmartCLIDE User Interface..
SmartCLIDE DLE Component..
BACKEND SERVICES...
Source Code Repository..
Service Discovery, Creation and Monitoring...
Security...
Intercommunication...
User Access Management..
Deployment and CI/CD...
Tool Support for Architectural Pattern Selection in Cloud centric Service-oriented
IDEs..
Runtime Monitoring and Verification (RMV)..
Vulnerability prediction based on Text Mining and BERT...
Testing Cloud-Based Applications.. 98

2@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

 Figures
10
15
16
21

 22
22
23
23
30
31

 32
32
34
44
49
54
 55
56
60
 61
 61
62
62
63
63
64
 64
65
65
67
71
74
78
81
83
85
91
95

 Tables
44

Figure 1: Pizza Analogy..
Figure 2: Perceptron...
Figure 3: Deep Learning Engine and Services..
Figure 4: The Self-Registration Pattern...
Figure 5: The Third-Party Registration Pattern...
Figure 6: A Service Description..
Figure 7: Client-Side Discovery..
Figure 8: Server-Side Discovery...
Figure 9: A low-power wide-area network (LPWAN)..
Figure 10: Monolithic vs Microservice architecture...
Figure 11: Deploying an application to a Kubernetes cluster..
Figure 12: : Real-time communication platform system...
Figure 13: IoT Catalogue...
Figure 14: SmartCLIDE research problems identification...
Figure 15: Monolithic vs. Microservices architecture..
Figure 16: Service Creation Widget...
Figure 17: Technical Debt Principal widget...
Figure 18: Technical Debt Interest widget (per File and Evolution)..............................
Figure 19: BPMN Editor..
Figure 20: Eclipse Theia code editor...
Figure 21: Security analysis page..
Figure 22: Vulnerability assessment page..
Figure 23: The main page of the services...
Figure 24: Code auto-completion..
Figure 25: Live template recommendation...
Figure 26: Comments generation..
Figure 27: Main page of the deployments..
Figure 28: Main page of the cost comparison service..
Figure 29: Runtime metrics monitoring and visualization page.................................
Figure 30: Hierarchical Group Structure in GitLab..
Figure 31: Runtime Monitoring and Verification Component Diagram........................
Figure 32: Software Security Assurance Module..
Figure 33: MOM Component Diagram..
Figure 34: Set of Applications Diagram. Workflow..
Figure 35: CI Server & Testing and QA Component Diagram..
Figure 36: RMV Subsystem Overview...
Figure 37: Transformer encoder..
Figure 38: SmartCLIDE External Service Identification..

Table 1: Micro-planning per task and relevant problems..
Table 2: Popular Related Pre-trained AI models.. 68

3@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

PROJECT CONSORTIUM

4@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Context and Motivation
The SmartCLIDE research project aims to bridge

the gap between on-demand business strategies

and the lack of qualified software professionals by

creating a new cloud native IDE that makes it easier

to develop and deploy cloud services. The project

is funded by the European Union’s Horizon 2020

research and innovation program, and involves

a consortium of 11 partners from Germany,

Greece, Luxembourg, Portugal, Spain, and the

United Kingdom.

SmartCLIDE extends Eclipse Theia to provide a

development environment that makes it easy to

create, compose, test and deploy data-centric

full-stack services and applications in the cloud. In

addition to providing high levels of abstraction at

all stages (development, testing, deployment and

execution), SmartCLIDE makes it easy for IaaS and

SaaS service self-discovery. The project covers the

architecture, front-end and back-end services of

the cloud based IDE.

Challenge
In this context, when companies face the creation

or composition of new services for their clouds,

they are having three alternatives, each one being

subject to different problems/limitations:

1. Development of services from scratch enclose

a high complexity due to the wide variety of

technologies that shall be used in the whole

stack. It is expensive and time consuming.

2. Creating new services by composition:

Existing marketplaces are tightly coupled

to IaaS and PaaS providers, and they are

not always uniformly classified or well

documented, so the discovery of valuable

and secure services are mostly a manual

INTRODUCTION

T he SmartCLIDE project enables organizations on the path to digitalization to
accelerate the creation and adoption of Cloud and Big Data solutions. The
innovative smart cloud-native development environment will support creators of

cloud services in the discovery, creation, composition, testing, and deployment of full-stack
data-centered services and applications in the cloud.

5@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

process and its validity is demonstrated by trial

and error.

3. Pricing models of public cloud providers are

very complex since they combine different

variables depending on the type of service.

These variable can be time of usage,

resources used (memory, storage, processing

capacity), thousands of predictions obtained

(in the case of machine learning algorithms),

volume of data transferred and many more.

This fact makes the calculation of costs

extremely difficult to predict, and therefore

to control.

Solution
Eclipse OpenSmartCLIDE project originated from

the SmartCLIDE project. The concept for the IDE

and the architecture are detailed in this document.

All services developed within SmartCLIDE are

open-source and are licensed under the Eclipse

Public License 2.0 scheme.

OpenSmartCLIDE is based on Eclipse Theia, which

provides all of the tools necessary for development.

Theia consists of a rich interface with a vast range

of features that accelerate deployment of cloud

services, improve their quality, and expand the skills

of novice and experienced developers.

The main features of OpenSmartCLIDE include:

1. Life cycle support. Software follows a life

cycle, from feature specification to solution

deployment. OpenSmartCLIDE provides

the specific tools required at each life-cycle

stage. For example, at the development stage,

OpenSmartCLIDE provides data sources,

data transformations, graphics visualization

artefacts, and general-purpose abstractions

and patterns that can be combined to

implement features.

2. Insightful source code monitoring.

OpenSmartCLIDE includes visualization

features that help developers gain deeper

understanding of the source code. It dynamically

shows the meaning of expressions or code

flow at low levels of granularity. It also allows

developers to compare different software

states, perform state changes that are reflected

dynamically, and create new abstractions that

can be easily reused.

3. CI/CD integration. OpenSmartCLIDE enables

integration with widely used CI/CD tools

such as GitHub and GitLab. The Eclipse

OpenSmartCLIDE also includes innovative

features that leverage the power of a deep

learning engine:

4. Development by demonstration and text

notation. OpenSmartCLIDE automatically

retrieves resources that are considered relevant

for the new development. The end user can

use text notation to enhance the description of

the retrieved behaviour or algorithm. The deep

learning engine then uses these notations to

suggest programmatic solutions that result in

6@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

the desired output.

5. Automatic software classification. The deep

learning engine automatically identifies

and classifies existing and new software

abstractions that can be visualized in the IDE

for reuse based on the purpose or behaviour

defined by the end user.

Impact
We can list four major impacts resulting from this

research project:

• Impact 1: Contribute to the development of

an ecosystem that will respond to the future

digitisation needs of industry and the public

sector. SmartCLIDE IDE provides the baseline

for the establishment of an ecosystem of

cloud service creators that will be able to

share services and applications that can be

automatically deployed in the cloud.

• Impact 2: Assist the development of new

cloud-based services and infrastructures in

Europe and foster an industrial capability in

the cloud computing sector. The disruptive

technology proposed by SmartCLIDE based

on the coding-by-demonstration principle, will

allow users with low technical skills to create

and securely deploy data intensive services of

the highest quality.

encourage European-based providers,

in particular SMEs, to develop and offer

cloud-based services based on the most

advanced technologies. SmartCLIDE

proposes the utilization of existing

open-source code to create the baseline

upon which the new IDE will be developed,

optimizing the use of technological resources

and the need of investments to further develop

the solution, facilitating the access of SMEs

to the technology.

• Impact 4: Leverage research and innovation

projects to support the development and

deployment of innovative cloud-based

services and next generation applications,

for the public and private sectors (including

standardisation and applications for Big-Data

and other sector-specific applications).

• Impact 3: Create new opportunities to

7@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

It lowers the entry-level to programming

activities to non-technical staff

SmartCLIDE allows end-users to easily

prototype features (that can be enhanced

later on by developers). It also provides a

powerful training tool for novel developers

to understand the underlying mechanisms

of data-intensive applications

It increases the reusability of services

SmartCLIDE allows reusing existing and

ad-hoc created microservices, data, control

structures, or operations abstractions.

It improves of the transparency, readability,

and comprehensibility of software

SmartCLIDE will implement several

features that will improve the readability

and comprehensibility of software

• it implements the coding-by-demonstration

principle, which is a way of creating

software that is closer to the way

humans think. Rather than adapting

the users’ mental scheme to the

requirements of a programminglanguage,

it’s the user who instructs a system

to reach the desiredresult making use

of abstractions.

• it implements control flow monitoring at

run-time (even at low levels of granularity),

which improves the knowledge about

how the software works and interacts

wi th dif ferent components and

sub-systems.

• it implements a stateful behavior, showing

the state of data (and variables) at each

execution step.

It increases quality and security levels

At design time, when the user defines the

output of the program, she will make use

of domain-specific languages like Gherkin,

which will enable the full automation of

acceptance tests making use of natural

language. SmartCLIDE will also make

available full abstractions of other testing

frameworks at testing stage, enabling

coders to deploy containers with testing

frameworks for testing purposes in

seconds.

It increases productivity levels

• Improved reusability, higher comprehension

of the underlying mechanisms of

soft-ware, and full control over the lifecycle

(from specification to deployment) will

boost the productivity of development

teams, even in the most complex contexts.

Benefits for the targeted users
OpenSmartCLIDE introduces several benefits for the different stakeholders within the service

creation lifecycle:

8@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

T his first set of articles presents the pillars of our project: Cloud Computing,
Deep Learning, the Integrated Development Environment, Service Discovery and
Programming by Example.

LET’S LAY THE FOUNDATION

Our partners have made a special effort to write for as broad a technical audience as possible, to provide

a look into the state-of-the-art of the project pillars and to understand the innovations that the SmartCLIDE

project plans to implement.

9@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Cloud Computing in a nutshell

Cloud Computing is the on-demand delivery of

computing services such as servers, databases,

networking structures and software over the

internet. This is implemented by dedicated data

centers and server farms whose services are

available to many different customers/users,

offering faster innovation, flexible resources, and

economies of scale. Cloud computing services

are based on a “pay-as-you-go” model which

means that clients are only charged for the

services they use.

Cloud computing centers are divided into three

major categories.

• Public clouds are operated by third-party

companies such as Microsoft (Azure) or

Amazon (AWS) which are responsible for the

stability, maintenance and expansion of the

underlying infrastructure, and provide their

service over a public network, the internet.

• Private cloud is structurally identical to the

public cloud, but it is being owned and used

by a single organization while the provided

services are restricted to a private network.

• Hybrid cloud combines private and

public clouds connected with technology

that enables data and applications to

be interchanged. This interconnection

offers higher f lexibil i ty and more

deployment options.

Types of Cloud Computing
services

Cloud Computing can be provided through different

by Netcompany-Intrasoft

C loud computing has become the platform for the new, global digital transformation
stage we have entered to not only for our countries, governments and companies
but also for each one of us. Our phone contacts, photos and messages are stored

in cloud data centers. Music and videos are being delivered through high capacity cloud
streaming services. The best route finding filter on maps with live traffic information is made
possible with Artificial Intelligence cloud services. Tax income declaration is applied through
the cloud. Even, registration to kindergarten schools in Greece is being performed for the first
time by using online family status verification through the public registry, again by leveraging
cloud technologies! Cloud computing is ubiquitous; either we use it deliberately or we do not.

But what is the actual
meaning of this “cloudy” term?
Is data being transferred to the
sky clouds for some purpose?
Probably not!

10@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

models according to the abstraction level and the

complexity of the underlying services. The three

standard models according to NIST are:

• INFRASTRUCTURE AS A SERVICE (IAAS):

The basic category of Cloud Computing.

Users rent servers, networking hardware,

storage devices and operating systems

and configure them to provide business

value. Users are responsible for system

configuration, operating system updates and

vulnerability eliminations.

• PLATFORM AS A SERVICE (PAAS): Ideal

for developers who want to quickly deploy

a web application without having to setup

servers, operating systems and networking,

as they are already configured. In other words,

PaaS is an environment created on-demand

for developing, delivering and administering

web applications.

• SOFTWARE AS A SERVICE (SAAS): Here

the whole application lifecycle, as well as the

underlying infrastructure, the configuration

and administration tasks, are performed

by the cloud provider. Users interact with

the application through a web browser or

mobile device.

The Pizza Analogy

All these new terms can be confusing. Even

experienced software engineers found the concept

delineation difficult. For this purpose, the famous

Pizza Analogy has been created. In the first column,

there is the equivalent to the non-cloud traditional

application deployment process. All tasks are

being handled by the user. While on the other

hand, the last column represents the equivalent

to the SaaS approach where every single task is

being “outsourced” to the Cloud Service Provider

leaving the user only with the pizza delight!

Latest advances

Cloud-Native

Inevitably, the transition to Cloud Computing was

not spontaneous. Cloud services were initially

Figure 1 : Pizza Anology

11@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

used mainly as an infrastructure (IaaS), that is

online, on-demand Virtual Machines which hosted

operating systems configured by the end-user. As

cloud services were developing, it became obvious

that the effective leverage of cloud advantages

could bemade possible only by applications

tailor-made forthe cloud environment, or as they

became known, Cloud Native. Applications of this

typeare especially designed and developed for

cloud deployment. They are built on microservices

architectures, leverage scaling features, and benefit

from continuous delivery to achieve reliability and

rapid response to the requirements imposed by

business changes.

Multi-cloud

Multicloud is the employment of cloud services from

different service providers in a single heterogeneous

architecture to meet different technical or business

requirements. Usually, it is implemented by

distributing cloud-native applications to several

cloud-hosting environments. The main reasons that

favor multi-cloud deployments include reducing

reliance on a single vendor, increasing flexibility and

adhering to local data protection policies.

Benefits and Pitfalls

The advantages of Cloud Computing can be

easily identified. A third-party company that

specializes in server hosting and deployment can

achieve economies of scale and provide safer

infrastructure that is already updated with the

latest vulnerability updates. It also guarantees a

reliable platform with zero downtime and the most

important, offers global-scale availability. This

enables a small startup somewhere in the world

to deploy a new innovative web application with

global availability by paying only for the computing

power, traffic and services it uses. Only consider

the costs of these requirements for a self-hosted

infrastructure alternative!

1. Amazon Web Services

2. Microsoft Azure

3. Google Cloud

4. Alibaba Cloud

5. IBM Cloud

6. VMWare Cloud

7. Hewlett Packard Enterprise

8. Cisco Systems

9. Salesforce

10. Oracle Cloud

Top Cloud Providers according to revenue

12@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Bibliography
Barron, Albert. “Pizza as a Service.” Accessed May 31, 2020.

 https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/

“Cloud Computing.” In Wikipedia, May 30, 2020.

 https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=959841571

“Cloud Computing @ Microsoft Azure.” Accessed May 31, 2020.

https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/

“Cloud-Native Applications | Microsoft Azure.” Accessed May 31, 2020.

https://azure.microsoft.com/en-us/overview/cloudnative/

Drake, Nate, Brian Turner December 20, and 2019. “Best Cloud Computing Services of 2020:

For Digital Transformation.” TechRadar. Accessed May 31, 2020.

https://www.techradar.com/best/best-cloud-computing-services

McLellan, Charles. “Multicloud: Everything You Need to Know about the Biggest Trend in

Cloud Computing.” ZDNet. Accessed May 31, 2020. https://www.zdnet.com/article/multicloud-

everything-you-need-to-know-about-the-biggest-trend-in-cloud-computingMell, Peter, and Tim Grance.

“The NIST Definition of Cloud Computing.” National Institute of Standards and Technology, September
28, 2011.

https://doi.org/10.6028/NIST.SP.800-145

“Multicloud.” In Wikipedia, February 15, 2020.

https://en.wikipedia.org/w/index.php?title=Multicloud&oldid=940901545.Cisco

“What Is Cloud Computing? – Cloud Computing Definition.” Accessed May 31, 2020.

https://www.cisco.com/c/en/us/solutions/cloud/what-is-cloud-computing.html

13@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

B uzzwords like Machine Learning and Deep Learning have been around for quite
some time. We’ve always known that intelligent systems had been a promising
technology that would enable us to search through vast amounts of information

quickly and effectively, facilitating the discovery and application of knowledge. Over the
last decades, technology has successfully taken the reins of numerous tasks that require
different degrees of intelligence. In fact, many of the services offered by today’s biggest
companies are based on Artificial Intelligence, such as Apple’s Siri or Amazon and Netflix’s
recommendation engines.

Machine Learning and Deep Learning: A power couple

Machine Learning is a branch of computing; it

is a very extensive subfield that aims to provide

computers with “intelligence”. It strives to develop

the machine’s ability to learn so that it can find the

correct solution to a problem without any further

explicit programming. Thus, in Machine Learning,

systems learn to solve puzzles by themselves.

Researchers in the field of Machine Learning

are concerned with developing mathematical

approaches and determining the parameters that

can be used to solve different problems. At present,

we can choose from a range of Machine Learning

algorithms, such as classification, regression,

dimensionality reduction or clustering. Our choice

will of course depend on the type of problem being

dealt with. In short:

Both Machine Learning and Deep Learning have

experienced some ups and downs along the way.

At times, ML was ahead of DL in terms of interest

and at others, DL was ahead of ML. It all depended

on the computing performance and their ability to

match expectations at a given point in time.

By AIR Institute

However, it’s important that
we learn to distinguish
between the two technologies;
Deep Learning (DL) and
Machine Learning (ML) are two
different concepts.

• Classification algorithms assign

categories to unseen samples

• Regression algorithms predict numeric

values from samples

• Dimensionality reduction algorithms

search for alternative mathematical

representations of the data

• Clustering algorithms group samples

depending on their similarity

14@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Modeling algorithms

In ML, the term “intelligence” refers to a specific

type of intelligence. Unlike an all-purpose, general

AI, ML intelligence enables a system to provide a

degree of assistance to the user; a helping hand

that supplements the human skills or wisdom with

knowledge automatically extracted from datasets

via mathematical and computational techniques.

This implies knowledge is obtained not through

programming, but through “training”.

To this end, a model is built so that the system can

make predictions on the basis of an input dataset,

being the mathematics behind the model that

drives the entire learning process. This learning

process usually involves adjusting weights -called

parameters- during the training phase to ensure

that predictions are valid in terms of accuracy,

mean error, or inertia, depending on the nature of

the data and algorithm. A fine-tune with statistical

quality enhancement purposes is performed by

finding values in a non-automatic way for the

so- called hyperparameters. These numbers have

to be specified by the user in a predefined grid.

Models are then successively and iteratively

defined, trained, evaluated and tested with

different portions of the data to make parameter

adjustments. Overfitting is to be avoided here:

a phenomenon by which a model would stick

too much to the training data, returning biased

predictions, making it less general and thus less

useful. Likewise, the information contained in the

dataset will have to be pre-processed to ensure

the desired degree of accuracy and interpretability.

If learning is supervised, the algorithm will compare

the results with tagged data (this process requires

manual tagging of all the data, which is costly,

cumbersome and virtually impossible in BIG DATA

terms), helping to determine if the model was right

or wrong for every sample. On the contrary, if no

tagging data is available, we’ll stick to different

unsupervised learning algorithms like those for

clustering, feature extraction and dimensionality

reduction to extract information from our datasets.

NEURAL NETWORKS can roughly be considered

a subset of these Machine Learning techniques.

They are particularly useful when it comes to

problems related to unsupervised datasets or Big

Data, making it possible to automatically extract

valuable information from patterns.

Approaching Neural Networks:
Deep Learning

Deep Learning itself extends Machine Learning,

focusing on Big Data and GPU processing -not

necessary but convenient. Neither of them is a

one-size-fits-all tool for all problems.

Software neurons are simple processing units

which simulate -to some extent- the work of their

biological counterpart. A neuron has some weighted

inputs and an output, to which an activation

function is applied. They are grouped in layers,

linking one’s outputs with the following inputs –

there are different variants of this structure. A layer

can contain an undetermined number of neurons.

Neural networks are composed of a number of

combinations of layers, each one performing

15@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

different simple operations which make up a

complex “reasoning” process when combined.

These layers fall into three categories: input, output,

and hidden (the ones in between). Optimization

functions are applied to infer the adequate weights

for each neuron; hence the computation-demanding

nature of these processes.

Taking the widely used example of a handwritten

number or an image classification problem, each

of the layers would be responsible for identifying

details as a border, a particular shape pattern, or

performing any of the former with a specific degree

of accuracy. To put things in perspective, this can

also be done by Machine Learning algorithms, such

as Support Vectorial Machine(SVM), by a different

implementation approach.

A vast variety of Neural Network configurations

is available nowadays, but these are the most

popular ones:

The Deep Learning concept
refers to training Neural
Networks with more than two
hidden layers, independently
of how deep the Neural
Network is.

Perceptron

Figure 2: Perceptron

This is the simplest model, in which neurons

apply the activation function over the weighted

inputs and turn it directly into an output. A multi-

layer (one hidden layer + input layer + output layer)

perceptron-composed version called Vanilla Neural

Network enhances this behavior by adding a layer

of heavily interconnected neurons. This is made

possible by a backpropagation algorithm, which

allows to calculate the loss of a neural network or,

in other words, a function that has to be minimized

16@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How can Deep Learning and Machine Learning help SmartCLIDE

Figure 3: Deep Learning Engine and Services

to enhance the quality of the predictions.

Convolutional Neural Networks

These Neural Networks take an image as an input

and return another as an output. A common example

is object identification in images. They decompose

the problem into simpler ones by applying filters

to the original channel-decomposed(RGB)

information. Recent applications in the field of

malicious code identification have had impressive

results.

Recurrent Neural Networks

These ones are focused on the identification of

patterns in sequences of data. Some of them are

given a small amount of “memory”, being neurons

capable of remembering prior states through a

“thinking” process (Long/Short Term Memory

LSTM). The most popular application of this type

of Neural Network is Natural Language Processing.

Several other groups are to be mentioned, such as

Recursive Neural Networks -image treatment and

NLP- or Unsupervised Pretrained Networks -data

generation and unsupervised learning-.

A range of tools can be used to develop Neural

Networks. Luckily enough, some are at a quite

high level of abstraction, such as the widespread

Keras or PyTorch. Other, lower-level tools include

Google’s popular Tensorflow which offers Graphics

Processing Unit capabilities.

17@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Developing software can be frustrating and messy; the boilerplate code is repetitive and it may be difficult to

reuse previously generated items, especially in large company environments. Nevertheless, services are a

useful programming paradigm which enhances scalability and resource control, facilitating the maintenance

(zero-downtime updates in continuous integration environments) processes carried out by small independent

teams on the basis of their atomic functionality. Hence, SmartCLIDE proposes an assistant who will:

• Help users develop services based on BPMN (Business Process Model and

Notation) schemes

• Help developers create quality code through suggestions, syntax highlighting and providing easy

documentation

• Help users/developers reuse already

existing services

Apart from this, a non-technical user should be capable to define a functionality and be guided through the

software composition process, enabling the use of existing and previously classified services.

In sum, a Deep Learning Engine will be designed to support ML and DL techniques at the core

of SmartCLIDE. This is a big challenge in terms of project aims and the number of techniques

to be tested.

SmartCLIDE will research Machine and Deep Learning techniques, testing
their advantages over simpler approaches, when faced with challenges
in quality assessment, service composition, serviceclassification and
service discovery, along with code suggestions.

18@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In this context, the SmartCLIDE consortium

proposes the creation of a new cloud-native

Integrated Development Environment (IDE) that

makes the development and deployment of

data-intensive services for the cloud easier than

before, aiming at bridging the gap between on

demand business strategies and the lack of qualified

software professionals.

Which will be the main features of our IDE?

• Lifecycle support. A software follows a

life-cycle, from the specification of features

to the deployment of the solution. Each stage

requires specific tools and SmartCLIDE will

provide these tools to software-crafters just

when they need them. For example, it will offer

Gherkin tools based on the specification of

the behavior of the services to develop and

defining the acceptance criteria, enabling

future automation of acceptance tests.

At the development stage, SmartCLIDE will

provide data sources, data transformations,

graphics visualization artifacts, or

general-purpose abstractions and patterns

that can be combined to implement the

above-mentioned features. And at a final stage,

it can discover specific purpose containers for

the deployment of the generated code.

• Insightful source code monitoring.

SmartCLIDE IDE will implement visualization

features that enable the developer to gain

SmartCLIDE: a new cloud-native IDE

A nalyzing data is much easier and faster today thanks to cloud computing and
on-demand availability of computer system resources such as data storage
and computing power. However, the development of cloud solutions requires

tools adapted to special characteristics of the cloud and fast time-to-markets demanded
by companies and organizations. Cloud distributed systems are highly complex due to
the wide variety of technologies and frameworks that can be used in the whole stack, the
underlying microservice architectures, or the management of the deployment pipeline. To
develop services from scratch is expensive, as well as time-consuming, and one of the main
challenges IT companies are facing is reflected in the difficulty to find qualified IT staff in the
market to face these challenges.

Makes the development and
deployment of data-intensive
services for the cloud easier
than before.

By ATB Bremen

19@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

a deeper knowledge about the source

code. It will dynamically show the meaning

of expressions, or the flow of code at low

levels of granularity. It will allow to compare

different software states that are achieved,

perform changes in states that are reflected

dynamically, or to create new abstractions

that can be easily reused.

• Version Control and Configuration

Management Integration. SmartCLIDE will

enable integration with the most frequently

used Version Control and Configuration

Management Systems such as Github or

GitLab. Following a DevOps and full-stack

development approach, a unique repository

shall be used to keep all the implementation

items under version control: source code,

binary files, configuration files, data, tests,

virtual machines, containers, etc.

These are already cool features, but we propose on

top some very nice features based on the power of

Deep Learning that make SmartCLIDE very special:

• Development by demonstration and text

notation. Making use of a Deep Learning

Engine, and based on the current features,

SmartCLIDE will automatically retrieve

resources that it considers relevant for

the new development. The end-user will

be able to use text notation to enhance

the description of the retrieved behavior or

algorithm. Based on these new indications,

the Deep Learning Engine will dynamically

propose programmatic solutions to obtain

the desired output. The environment will

also enable developers to face programming

tasks by manipulating abstractions straight

forward, not requiring previous knowledge of

the underlying language.

• Automatic software classification. Our Deep

Learning Engine will automatically identify and

classify already existing and new software

abstractions that will be visualized in the IDE

for re-utilization, based on the purpose or

behavior defined by the end-user.

• Continuous integration and deployment

assistance. SmartCLIDE will guide the

user through each stage of the lifecycle,

ensuring that the generated code has been

properly tested, accurately integrated within

the corresponding development branch,

and automatically deployed in the selected

cloud service, implementing the end-to-end

responsibility of the DevOps philosophy.

SmartCLIDE will be based on Eclipse THEIA, the

cloud version of the Eclipse IDE, offering all the

necessary tools for developing in one single place.

It will be a rich interface, with a vast range of features

to accelerate the deployment of cloud services,

improve their quality, and expand the skills of novel

and experienced developers.

20@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Discovery in a Nutshell

I n recent years, Microservices have gained in popularity, since they come with various
advantages, which are very useful for contemporary software development for example,
in the era of containers, decentralization and cloud computing.

By University of Macedonia

Additionally, the microservices architecture is an

approach in which an application is broken down into

a number of components, in which each component

is responsible for a specific role. Different

components communicate with each other using

network protocols (e.g., HTTP) through connectors

(e.g., APIs). A cloud platform is able to provide such

services to the user. The term “cloud services“, as

described in other blog posts, refers to a wide range

of services delivered on-demand to companies

and/or customers over the internet. These services

are designed to provide easy, affordable access to

applications and resources, without the need for

internal infrastructure or hardware. Ranging from

checking emails to collaborative document writing,

most employees use cloud services throughout

their workday, whether they’re aware of it or not. As

a result, microservices are widespread and used by

many expert or novice end-users.

In addition to that, microservices offer many

functionalities that can be easily deployed or

modified saving time and effort.

Luckily, all cloud providers as well as the research

community have experimented with Service

Discovery. Service Discovery refers to the

processby which, on the one hand, an application-

user learns (by search) what services are available

on the network, and on the other hand, the network

“learns” what services the application can provide.

How does Service Discovery
Work?

There are three components to Service Discovery:

the service registry, the service provider and the

service consumer.

 The Service Registry. The service registry is a

Microservices can be developed
and deployed on different
platforms, using different
programming languages and
development tools.

Nevertheless, the large variety
and the number of available
services make it difficult for a
novice cloud developer to find
and choose the right services
for his/her application.

21@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

The Third-Party Registration Pattern.

Third-party registration allows delegation of service

registration/deregistration task to Third-party

registrar (service manager) component. On service

instance start-up, service manager is responsible

for registering the service with the Service Registry.

Similarly, it de-registers on service shutdown.

With this option, service resilience can be better

handled as Service Manager can handle these

requests more elegantly than self-registration

where a service can abruptly go down with Service

Registry not being aware. The following diagram

shows the structure of this pattern.

key part of service discovery. A service registry

needs to be highly available and up-to-date. Service

instances must be registered with and deregistered

from the service registry. The identification of

services can rely on advanced search methods,

and a search in public or private repositories, or on

the internet. In a cloud platform, every service has

many instances, and each instance is being used

by an application or a user. In terms of adding a new

service to the system, it is common to use the Self-

Registration Pattern in which the Service Provider

adds a new service with its information on the

system. The alternative to self-registration pattern

is the existence of a system component to manage

the registration of service instances: namely, the

third-party registration pattern. Both solutions are

presented below:

The Self-Registration Pattern. In the self-registration

pattern, a service instance is responsible for

registering and deregistering itself with the service

registry. Also, if required, a service instance sends

heartbeat requests to prevent its registration

from expiring.

Figure 4: The Self‑Registration Pattern

22@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 5: The Third‑Party Registration Pattern

Service Discovery. Regardless of the Service

Registry decision, there is a need for a predefined

protocol (i.e., a specific way to describe the

service) to enable discovery. A service description

captures the functional and non-functional

characteristics of a service in a format that can be

machine-read and processed. This description helps

the Service Discovery to find services based on search

criteria. A service description can be an XML file as

shown below.

Figure 6: A Service Description

The service discovery is a search process that

aims at finding available services with specific

requirements or finding instances of a service by

performing queries on the service registry. There

are two primary strategies for discovering services,

via a service registry:

Client Side Discovery. The client contacts a service

registry, receives details for available services,

and contacts one of them using a load balancing

algorithm. When the client requires a microservice,

it finds a suitable service in the registry and

connects to it directly. The assumption is that

the registry tracks availability of services using a

heartbeat mechanism.

23@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Server Side Discovery. The client contacts a load

balancer, making a request that indicates which

type of service it needs. The load balancer consults

the service registry, selects the optimal service

and routes the request to it. Load balancing is

commonly used as a service discovery mechanism;

it provides health checks and can automatically

register/unregister services when they fail. The load

balancer works in tandem with the service registry.

Figure 7: Client‑Side Discovery

Figure 8: Server‑Side Discovery

24@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Consumer. Finally, these applications are

being used by some entity called Service Consumer.

The service consumer could be an application, a

service, or any other type of software module that

requires a specific functionality, through a service.

This entity uses the Service Discovery to find

services within the system, binding to the service

over a transport protocol and then executing the

service function. The service consumer executes

the service by sending a request formatted

according to the service description. The most

common example of a service consumer is a REST

Web Service call like this one:

api.mycompany.io/v1/party/findById/12

This request invokes a service of the revision v1 that

exists in the api.mycompany.io host. Specifically, it

will try to find a party entity with id=12.

Examples of Service Discovery in
Industry

1. Google API Discovery Service: The Discovery

API provides a list of Google APIs and a

machine-readable “Discovery Document” for

each API.

2. Amazon ECS Service Discovery (AWS Cloud

Map API): AWS Cloud Map is a fully managed

service that can be used to create and maintain

a map of the backend services and resources.

3. IBM Service Discovery API: Service Discovery

is a core service within a cloud microservices

architecture that can be used to accelerate

the development of applications in the cloud

environment.

4. Docker: Service discovery registers a service

and publishes its connectivity information so

that other services are aware of how to connect

to the service. Some ways to achieve service

discovery with docker are:

 a. Service Discovery with DNS

 b. Internal Load Balancing

 c. External Load Balancing (Swarm Mode

 Routing Mesh)

 d. The Swarm Layer 7 Routing (Interlock Proxy)

5. Azure API Management with microservices:

As a full-lifecycle API management solution, it

provides additional capabilities including a self-

service developer portal for API discovery, API

lifecycle management, and API analytics.

25@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

References
www.g2.com/categories/service-discovery

www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

ns1.com/dns-service-discovery

www.datawire.io/guide/traffic/service-discovery-microservices/

avinetworks.com/glossary/service-discovery/

medium.com/@jamesemyn/service-discovery-in-microsrvice-cbd54afb94f3

auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

www.magalix.com/blog/kubernetes-patterns-the-service-discovery-pattern

cloud.google.com/service-infrastructure/docs/service-consumer-management/reference

docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html

developers.google.com/discovery

developer.ibm.com/api/view/id-129:title-IBM_Service_Discovery_API#Overview

success.docker.com/article/ucp-service-discovery-swarm

docs.microsoft.com/en-us/azure/api-management/api-management-kubernetes

26@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Programming By Example
By AIR Institute & KAIROS DS

T he aim of Programming By Example (PBE) is to develop programs through the
synthesis of a series of examples. First, a sequence of actions is performed or
given by the user: this is the starting point of a combination of functions which

result in a programmatic output, designated for a specific task.

With this technique, users are able to create

programs by interacting with the interfaces they

are used to, implementing generalizations to

problem-solving techniques which are independent

from the data they were generated with.

 In case the generated program does not operate

correctly, a new tuple has to be introduced to adjust

the programmatic output. Thus, users provide

input/output combinations (examples) of the task

they want to perform, and the computer infers a

program that is capable of addressing the problem.

Although PBE is targeted at non-expert users and

its purpose is to lighten the workload associated

with programming, it nevertheless has added value

to advanced users because it mitigates tedious and

repetitive tasks, optimizing their work. Moreover,

the generated code can be reviewed by a human

–the output is legible and easy to understand

depending on the developer-, given that a large part

of the program is normally correct, only some parts

are too oriented to the examples it was trained with.

This characteristic means a program does not have

to simply be taken or discarded as ML black-box

models do. Thus, in PBE, a program can be modified

if the number of examples is not sufficient.

Nonetheless, this methodology suffers from a

series of limitations. For example, the generalization

is not broad enough to deal with all the plausible

data types, and the program is not able to cope with

variations to its output.

The definition of a generic Domain-Specific

Language (DSL) is key to a PBE. DSL is a grammar

of production rules whose aim is to narrow down

the search space; it represents the limits of a PBE

system. If a program can be described in terms of

a DSL, then a solution may be found. Otherwise,

it is impossible, no matter how many examples

are provided.

A more technical definition
states that PBE is a synthesis
technique by which programs
are iteratively and automatically
generated, from tuples of inputs
and outputs called examples

27@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

PBE is also known as inductive synthesis:

a synthesis process that is based on examples.

A deductive synthesis, in turn, is based on logical

specifications defined by the user. PBE breaks

a common programming rule, in that PBE users

are not simply consumers because they can, to

some degree, build their own code. This means

small scripts are automatically generated for little

everyday tasks. For advanced users, PBE can be

a helping hand too. It’s especially useful for data

scientists who must normally manage big amounts

of data before they can apply AI algorithms.

Normally, data is obtained from diverse sources

which have different degrees of structuring. While

they provide users with a high level of flexibility, they

make it hard to exploit, combine, and query data.

Unfortunately, a major problem associated with

inductive synthesis is the ambiguity which results

from defining the behaviour of the program and not

its exact requirements.

PBE Application and
generated output

The main application fields of PBE are robotics,

code refactoring, data parsing or query building,

and prominently, the so-called data wrangling.

Data wrangling consists in pre-processing the data

that is to be fed to other tasks. The process can be

divided into three parts: extraction, transformation

and formatting. Extraction consists in the generation

of structured data from semi-structured sources,

such as web pages or JSON files, where a program

is built for every field extraction. Transformation

addresses type casting and combining fields,

e.g. the composition of names from several

related fields. Finally, formatting means that a

specific format is applied in a repetitive way or a

structured output is created from the previously

generated data.

Code refactoring allows users to save time on

common maintenance tasks, enhancing users’

time management and performance.

Regarding the code generated by PBE tools, code

generation is a complex process whose results are

not always satisfying: while in an ordinary sense

traditional program synthesis consists in creating

scripts which satisfy a series of logical conditions,

in PBE, scripts are synthesised from a number

of input/output states. This model is successful

because it allows users to define the desired

behaviour, and then, tune-up the result manually.

On the other hand, it is difficult to generate code

that is consistent with all the examples provided

by the user.

The absence of a sufficient number of examples is

a common problem during program composition. It

is tackled by applying techniques such as Machine

Learning (ML), which make it possible to rank

intermediate functions, or to extract feedback on

the generated programs.

28@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In addition, more complex programs can be

created. These programs use sequential predefined

functions to perform specific tasks. This is done in

AI approaches whose aim is to enhance the results

of a PBE process, obtaining programs which

solve high-level functions from some simpler,

atomic ones.

ML vs PBE

The relationship between ML and PBE is

complementary, although, in some cases, they may

be used separately to deal with similar problems.

While both use example data to produce specific-

purpose code, the main difference lies in PBE’s

suitability for small repetitive tasks:

• PBE programs may be edited and adapted

after they have been generated, to ensure they

are fit for their final purpose. This can be done

to optimize and adjust their functioning. On

the contrary, ML models may only be applied

to data.

• PBE requires a lesser amount of data

(examples) to infer a generalization, and in

this manner generate a proper output.

• ML can be used to enhance the PBE process

of program generation, making the search for

an ideal function faster. Also, PBE makes it

easier to tackle tasks that must be performed

prior to the application of AI algorithms. Note

that ML has to be used to deal with complex

data tasks.

• Some researchers have made efforts to apply

Neural Networks to PBE code generation, by

means of the aforementioned process of

using sequences of atomic particular-purpose

functions to achieve a complex result.

Programming By Example in
SmartCLIDE

The inclusion of the PBE paradigm in SmartCLIDE

could help create generalizations which would

spare the user certain development tasks during the

creation of services, and provide help and support

with the tasks associated with the Deep Learning

Engine (DLE), such as data pre-processing.

The combination of PBE with some other

concepts like Context will be fundamental for the

simplification of the development process for

non-technical users. This will also help make

service generation easier for developers. PBE

represents too an interesting feature to test its

matching possibilities with AI usage.

To sum up, PBE has to be tested
as a helper in coding and data
processing. The SmartCLIDE
interface could offer the benefits
of PBE, reducing the workload
associated with complex
syntaxes and repetitive tasks.

29@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

• Wellness Telecom proposes a real-time communication project that involves the deployment of

multiple virtual machines, providing a compelling use-case for SmartCLIDE at the creation of run-

time abstractions like real-time constraints of the communication process and the validation of the

deployment in software-defined infrastructures.

• UNPARALLEL proposes two different scenarios for SmartCLIDE piloting its evaluation in

the evolutive development and interfacing of an IoT web catalog with SmartCLIDE, enabling

the end-users of the portal (mostly IoT developers or integrators) to develop IoT solutions

with SmartCLIDE.

• CONTACT Software proposes to evaluate SmartCLIDE as part of its ELEMENTs integration platform,

enabling potential customers to build their own IoT-related services.

• Netcompany-Intrasoft will make use of SmartCLIDE at all the stages of the lifecycle within an existing

software project.

If you would like to know more about our project, we invite you to visit the SmartCLIDE.eu website and

subscribe to our newsletter to receive regular updates on our progress.

OUR SCENARIOS OF USE

T his second section presents scenarios where SmartCLIDE will be validated and
evaluated under real conditions. There are 4 such scenarios:

30@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

About LoRaWAN communication services
By Wellness Telecom

The main advantages of LoRa are its long-range

capability and its affordability. A typical use case

for LoRa is in smart cities, where low-powered and

inexpensive internet of things devices (typically

sensors or monitors) spread across a large area

send small packets of data sporadically to a central

administrator.

A low-power wide-area network (LPWAN) is a

type of wireless telecommunication network that

allows connected devices to have long-range

communications capabilities at a low bit rate.

LPWANs are typically used in asset monitoring

and management in smart cities and Industrial

Internet of Things deployments. This is in contrast

to wireless wide-area networks (typically used by

large corporate organizations) that carry more

data and use more power. Examples of LPWAN

technology are Lora/LoraWAN, Sigfox, MIoTy, Wi-

SUN, LTE-M, and NB-IOT.

L oRa is a radio modulation technique that is essentially a way of manipulating radio
waves to encode information using a chirped (chirp spread spectrum technology),
multi-symbol format. LoRa as a term can also refer to the systems that support this

modulation technique or the communication network that IoT applications use.

Figure 9: A low‑power wide‑area network (LPWAN)

31@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

The Concept

Wellness TechGroup proposes a microservices-

based LoRaWAN communications platform to

face all these difficulties. When compared to old

monolithic applications, microservices can provide:

(a) replication of microservices (i.e., to improve

availability, adaptability and scalability), and

(b) an inherent security layer thanks to container

and virtual machine (VM) native isolations.

Despite its usefulness, the microservice

architecture presents a series of difficulties for

the developer given the large granularity of its

elements. For example, in the chosen real-time

communication use case, the final system must

include, at least, the following functionalities

(as separated microservices):

• ChirpStack Network Server is responsible for

handling (and de-duplication) of uplink data

received by the gateway(s) and the scheduling

of downlink data transmissions.

• ChirpStack Application Server is responsible

for the node “inventory” part of a LoRaWAN

infrastructure, handling of received application

payloads and the downlink application payload

queue

• ChirpStack Gateway Bridge is a service which

converts LoRa® Packet Forwarder protocols

into a ChirpStack common data-format (JSON

and Protobuf).

• Mixer and/or transcoder: supplies transcoding

and mixing video tools.

• Database (e.g., MySQL, Redis…): supplies

storage capabilities (e.g., registered users,

calls in progress)

Docker container
Kubernetes-based deployment

Containerization involves the packaging of code and

its dependencies together. To better understand

containerization with Docker and Kubernetes, this

guide provides an example of developing a simple

application, containerizing, and deploying it to a

Kubernetes cluster.

Figure 10: Monolithic vs Microservice architecture

32@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 11: Deploying an application to a Kubernetes cluster

Figure 12: : Real‑time communication platform system

Consequently, the whole LoraWan communication platform system can be illustrated as:

SmartCLIDE benefits

Developing, deploying, and monitoring complex systems such as the Chirpstack LoRaWAN platform we

previously described using containers is a tough task, but thanks to SmartCLIDE, developers will be able not

only to deploy it, but also to get:

• A better comprehension of real-time deployment costs and time

33@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

• A deeper insight into deployment costs, by providing monitoring tools that will allow the developer to

track the cost of a deployment for major cloud providers.

• Easier management of deployed services.

• Smoother service delivery through reduced number of errors and reduction in time to resolution

• Improved understanding of lifecycle costs

• Overall increase in agility and efficiency of initial deployments

In conclusion, SmartCLIDE will aid the developer throughout every phase, such as development, testing, and

deployment. Then, once deployed, the IDE (Integrated Development Environment) will supply visual monitoring

tools to manage and extend running capabilities, also providing a detailed analysis about deployment and

deployment costs.

In conclusion, SmartCLIDE will aid the developer throughout every phase,
such as development, testing, and deployment.

34@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Enhance IoT-Catalogue with an integrated Cloud IDE
By UNPARALLEL

I oT-Catalogue (iot-catalogue.com) is the one-stop-source for Internet-of-Things
innovations and technologies to help users (developers/integrators/advisors/end-
users) take advantage of IoT for the benefit of society, businesses, and individuals.

IoT-Catalogue provides a large range of information about products, including both hardware
devices and software components. It also identifies solutions designed to target specific
ICT problems and describes use cases where solutions were applied.

Figure 13: IoT Catalogue

https://www.iot-catalogue.com/

35@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

IoT-Catalogue holds and presents a wide range of

information that can help IoT developers design

their IoT solutions. Options range from low-level

hardware (like boards and sensors) to platforms and

services to store and process data. However, the

current IoT-Catalogue lacks mechanisms to make

use of the available information to actively support

the developers in the creation of IoT applications.

SmartCLIDE benefits

The integration of SmartCLIDE technologies in

IoT-Catalogue will evolve IoT-Catalogue to a

closed-loop IoT development platform that:

• Supports IoT developers on the design and

implementation of their IoT solutions;

• Helps developers select the hardware that

better suits the intended purpose;

• Supports the development of the IoT solution

software that will use the hardware selected;

• Allows the definition of the complete behavior

of the solution, from the data acquisition on

devices to the data storage and processing on

platforms in the Cloud.

In this sense, an integrated IDE
that provides abstractions for
the tools and services listed

in IoT-Catalogue would enable
the development of users’ own

IoT solutions.

36@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Provide a Quick Demonstration for a Customer
By CONTACT Software

T he SmartCLIDE project has based its use cases on a set of 29 generic use cases,
which 5 Pilot Cases demonstrate and make use of. The Pilot case by CONTACT
Software, described here, involves the scenario where a service provider is working

with customers throughout the lifecycle of a custom solution.

CONTACT Software is a leading provider of

solutions for CAD data management, product

data management (PDM), and product lifecycle

management (PLM). Founded in 1990, the

objectives of our founder, Karl Heinz Zachries,

remain our objectives of today: making

complex product data more accessible and

connecting employees across technical and

organizational boundaries.

CONTACT is, at its core, a customer-focused

company. We act in accordance with market

requirements and, above all, the requirements

of our customers. We maintain long-term

partnerships with our customers according to our

motto “Continuity and Perspective”. Our team has

expertise in industry and industrial processes, PDM/

PLM technology, and project implementation.

CONTACT employs about 400 employees with

headquarters and product development in Bremen,

Germany. Our substantial R&D commitment ensures

that we know what topics will be relevant tomorrow

and develop – often together with our customers

– appropriate solutions early on, for example, at

the moment for the wide range of topics relating

“Making complex product data
more accessible and
connecting employees across
technical and organizational
boundaries.”

37@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

to Industry 4.0 / Internet of Things. We provide our

customers with comprehensive support in concept

development and implementation, replacing old

systems and supplementing existing installations

in the face of additional requirements.

As an overall provider, we feel responsible for the

complete solution. Our customers benefit from

coordinated, one-stop consulting, implementation,

and technology. Our customers are manufacturing

companies and development organizations that

often operate worldwide and rank among the

leaders in their market segments.

Design principle: modular instead of monolithic

The foundation for our design principle, “modular

instead of monolithic”, is provided by the CONTACT

Elements platform. Similar to Lego, CONTACT

Elements’ modular design principle allows

comprehensive applications to be created that are

more than the sum of their parts: each outstanding

in its own right, together something unique. The

same is true of its consistent ease of use and thus

outstanding user experience. Our open standard

solutions support the product lifecycle from the

initial idea through to its deployment at customer

sites. Our open standard solutions are CIM Database

PLM, Project Office, Collaboration Hub, and

Elements for IoT. We combine data management

for virtual products with the functions required

for collaboration and for process and project

management in product development. We offer

an extensive library for industrial IoT services, with

modules for the digital twinning of real products.

We live in a world of innovative companies that are

working on the products of the future each and

every day and are putting the digital transformation

to smarter products into motion. Our priority is to

consider in-depth, listen carefully, and offer advice

on an equal footing with our partners.

38@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

CONTACT Software is currently in a transition phase

in its architecture, from a client/server installation

on-premise to a cloud-based installation, with

customers using only web clients, thus having all of

the functionality in a browser. Of course, one of the

main focuses is to make the transition as smooth

as possible.

Especially the support of state-of-the-art

methodologies in IDEs in use at CONTACT lacks

depth. Thus, a great need in the current phase is

to be able to simplify not only the deployment and

management of cloud (micro-)services but in fact

their development as well.

As a result of the openness of our products and

our goal to collaborate with customers in the

development and improvement of our software,

we need tools that support the user and let him

work as efficiently as possible. For example, when

customizing a solution to their needs, we may need

tools to support the creation of additional services

and deployments. In addition, all parties in the

collaboration are intensely aware of the need to

create and use secure software both cloud-based

and on-premise. Therefore, tools that support

the secure development and creation of (cloud)

services are of utmost importance.

Working with SmartCLIDE

It will be a great help in sales scenarios, when

the demand for a quickly deployable, but stable

demonstration of a custom-tailored solution

is high (depending on the requirements of the

potential customer) and also in later steps of the

collaboration with a customer. With SmartCLIDE

we want to collaboratively work on our solution

with each customer and develop it further in order

However, the tools for setting
up and orchestrating a diverse
and complex cloud architecture
are not as developed as some
software engineers hoped them
to be.

For us, SmartCLIDE will be a
catalyst when working with
cloud technologies.

39@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

to make it the best possible fit for the individual end user’s needs. In order for this to work properly, we will

rely on the easy-to-use functionalities of SmartCLIDE and the low-level programming examples.

SmartCLIDE will allow the user to monitor the quality of written code and deployed services.

We aim to use this functionality not only to increase our code quality and the corresponding test coverage, but

we will also use it as a tool to help monitor performance of deployed services in a live production environment,

both on customer premises and inhouse. Specifically, SmartCLIDE will help us to detect and avoid possible

bottlenecks and breakages.

40@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Optimizing Resources
By Netcompany-Intrasoft

Netcompany-Intrasoft leads one of the envisioned

SmartCLIDE pilot scenarios that aims to involve

its PERSEUS Software Product Development

teams, currently comprising of three agile teams,

who will use the enhanced SmartCLIDE platform

to develop new PERSEUS functionalities, with the

utmost goal to evaluate the optimization levels that

can be reached with respect to use of resources

and development time, enhancing thus the entire

software development lifecycle processes and

improving team collaboration…

The need emerges primarily by, on the one

hand, the observation that due to a number of

commonalities in features/functions/processes in

the PERSEUS sub-projects managed by different

agile teams, code could be re-used across these

product development teams. In addition, these

teams are many times tasked to perform common

parallel tasks and even repeat trivial tasks, thus

optimizations in these processes could lead

to both time/resources optimization as well as

increased efficiency.

As PERSEUS is a multi-module system and in

addition Netcompany – Intrasoft has a wide

range of products available or under development,

there is a rich library of potentially reusable,

software components and services developed by

diverse agile development teams. Thus, software

re-utilization and optimized team performance and

collaboration are key targets for the company. Thus,

in the context of the PERSEUS pilot in SmartCLIDE,

the extent of re-utilization of software, leading to

optimized performance and collaboration of the

different agile teams, will be assessed both in the

case under which the SmartCLIDE platform is used

and when it is not, in order to evaluate the gains.

This assessment will be accomplished by gathering

feedback from the involved developer teams

during the pilot and at the same time measuring

the number of code blocks that are re-used in

each case.

N etcompany-Intrasoft is a multi-national software and IT services company, part of
Netcompany, that employs more than 2800 professionals. Its Product Development
Department has been developing highly customized, complex software products

using the latest technology for over 20 years. These products are used in the banking,
law, customs, social security, and taxation sectors, among others. One of these software
products is PERSEUS©, a highly Configurable & Scalable Software Product, built upon an
Open Architecture Technology, that fully automates the business processes within a Social
Security and Pensions Administration Organization.

https://perseus.netcompany-intrasoft.com/

41@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Another target to be achieved concerns the

reduction in time for resolving errors. In the

PERSEUS project, the JIRA issue tracker is used

for handling Features and Bugs. The Developer

work is divided into two-weeks sprints and every

ticket (issue) has story points estimated by the

development team, before the beginning of a sprint,

depending on the complexity and the time needed

to resolve each ticket. At the end of every sprint,

a report chart is created which shows the work that

should be completed and the work that was actually

completed. Using this methodology, in which each

issue is tracked, the time in resolving issues is

measured. This will be performed both in the case

in which the SmartCLIDE platform is used by the

developer teams and when it is not, to assess the

gains brought by SmartCLIDE.

In addition, the reduction in time to deploy a

significant feature requested by an end user is

important. In PERSEUS, Jenkins is used to deploy

its modules in slots. Before each slot, the desired

wars are gathered to deploy in a list and a Jenkins

job is initiated. Depending on how many wars are

in this list, the time varies. Thus, the time will be

measured to deploy a significant new feature using

feedback from the agile team both in the case in

which the SmartCLIDE platform is used and when

it is not.

Furthermore, another target of the pilot is the

reduction in lifecycle costs. This will be measured

on feedback collected from the involved agile

teams regarding:

• The time needed to specify what is needed to

be implemented and how;

• The time spent on development by the

development teams and testing by the QA

testers, using the Jira issue tracker;

• The time spent on deployment (e.g. with

Jenkins), both in the cases in which the

SmartCLIDE platform is used and when

it is not.

Finally, another aim is to detect (and thus resolve)

as many security vulnerabilities in the developed

software as possible to increase the security

level of the produced software of PERSEUS

(and other products). Thus, another metric to

measure is the level of increase in the number

of detected security vulnerabilities. This will be

measured using SonarQube and feedback gathered

from the involved agile teams before and after using

the SmartCLIDE platform-related functions.

42@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

T his section dives into the heart of the matter: the benefits of the SmartCLIDE
project. To this end, it includes 3 articles:

• The first article presents the team’s approach to listing the challenges the project wants to solve and

the associated proposed solutions;

• Based on the market requirements, the second article explains the added value of an architecture based

on microservices. This article is divided into 2 parts:

• Part 1: The road to microservices

• Part 2: Quality and security in a microservices world

• The third article looks at a key feature of SmartCLIDE: service creation and how SmartCLIDE will support

it.

• The fourth one explains the SmartCLIDE deep-learning engine

• The last one presents the SmartCLIDE User Interface

DEEP DIVE

43@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Innovative Approaches
By University of Macedonia

The approach used by the SmartCLIDE team is

the engineering cycles, as described in the design

science framework [2]. According to Wieringa,

every engineering problem can be treated as a

4-step process:

7. identifying the need and specifying

 the problem;

8. design the proposed solution;

9. evaluate the proposed solution; and

10. apply the solution.

The deliverable D2.1 aims at the first 3 steps of

the approach in the sense that the application of

the solution falls into “Assessment of SmartCLIDE

at pilot users”. In this article, we focus on the 1st

step identification of problems; whereas the 2nd

(proposal) and the 3rd (evaluation) steps will be

presented in the final deliverable D2.1.

The identification of the targeted problems

stemmed from the project proposal and the

associated requirements. Each problem has been

decomposed into simpler tasks that need to be

fulfilled to solve the problems. The tasks are

decomposed into two main categories:

• technological tasks aim to solve problems

by reusing or adapting existing solutions.

The advancement that technological tasks

is the introduced level of automation, as well

as the composition of existing solutions into

processes.

• research tasks aim to solve problems that

cannot be treated with existing solutions;

thus, urge for novel algorithms, prototypes,

and tools.

The outcomes of these tasks are organized into

seven types:

1. reports correspond to documents describing

existing tools, repos, approaches, etc.;

2. datasets correspond to collections of data

points that will be stored in a repo;

3. schemas correspond to documents

describing the format of data stored in repos,

or exchanged between components;

4. tool corresponds to existing implementations

that solve a practical problem;

5. approach corresponds to novel research

approaches (method, algorithm, etc.) for

problem solving. They are expected to be

T his article describes novel approaches for service discovery, and classification. This
approach is detailed in the deliverable D2.1 “SmartCLIDE Innovative Approaches
and Features on Services Discovery, Creation, Composition and Deployment“[1]. It

presents the approach adopted by the project team to define and organize the project tasks.

44@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

linked to a publication;

6. draft prototype corresponds to the proof-of

concept implementation of novel approaches.

This version of the implementation is used

only for research purposes. We expect a low

level of automation and no integration at this

stage;

7. final prototype corresponds to the functionally

final version of the research prototype. This

version will be fully automated, no integration.

Figure 14 maps the problems identified and the

associated requirements to a list of tasks, so as to

guide the organization of the D2.1 deliverable and

the research activities.

Figure 14: SmartCLIDE research problems identification

Upon problem identification, the project team proceeded to the assignment of responsibilities for answering

each problem (see Table 1).

Table 1: Micro‑planning per task and relevant problems

How can services be

classified?

Research approach on getting services from classic registries

Research approach on getting services from web pages

Research approach on getting services from code repositories

SolutionProblem

45@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How can services be created?

Research approach on available datasets

Research approach on classification model implementation

How can services be

registered?

Research approach on registry service query

Research approach for interfacing service registry

How can code be generated?

Technological Approach on the Integration of Version Control in

SmartCLIDE

Technological Approach for service creation in SmartCLIDE

How can services be

composed into workflows?

Research Approach on Source Code Generation

Research Approach on Autocomplete Suggestions

Technological Approach on Service Composition Representation

Using BPML Technological Approach on Service Composition

(either Discovered or Created) Technological Approach for

Mapping Services to Containers

How can services be

classified?

How can services be

specified?
Technological Approach on Functional Service Specification

Technological Approach on the Specification of Service Runtime

Monitoring & Verification

Can patterns lead to code

templates?

Research Approach on Design Patterns Default Implementations

Research Approach on Architectural Patterns Default

Implementations Research Approach on Security Patterns

Implementations

Technological Approach for Coverage of Created Services

Technological Approach for Unit and Acceptance Testing

Research Approach for Automated Test Case Generation

(Virtual User for Testing)

How can services and

workflows be tested?

Research Approach on Autocomplete Suggestions on Service

Composition

Research Approach on Workflow Context Identification

How can service composition

be assisted by AI?

46@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How can services and

workflows be monitored?

How can security,

maintainability, and

reusability be assessed?

Research Approach for Security Assessment at Service Level

Research Approach for Security Assessment at

Workflow Level

Research Approach for Maintainability Assessment at

Service Level

Research Approach for Maintainability Assessment at

Workflow Level

Research Approach for Reusability Assessment at Service

Level Research Approach for Reusability Assessment at

Workflow Level

How can services and

workflows be deployed

Technological Approach on Deployment and

Orchestration Tools

Technological Approach on Management Tools

Research Approach on Continuous Delivery

Technological Approach on Runtime Monitoring and

Verification of Services

Research Approach on Defining Sensors/Metrics for

Security Monitoring

Technological Approach on System Monitoring (Performance

and QoS)

How can conformance to

requirements be assessed?
Research Approach on Cost Analysis

Research Approach on Scalability Assessment

The deliverable D2.1 details each problem and how it is planned to be solved.

References
[1] The link to the deliverable D2.1 will be available as soon it will be accepted by the project reviewers

[2] R. J. Wieringa, “Design science methodology for information systems and software engineering”,
Springer, 2014.

47@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

The road towards microservices

T he SmartCLIDE consortium pursues the design and development of a Cloud IDE
that offers full support to the services creation life cycle: from specification of
user stories to deployment in the cloud. Having performed a retrospective look

to software development approaches, the consortium aims to employ a low-code software
development paradigm for creating reusable and easily deployable microservices that can
be indexed and composed in more complex business processes, in an online development
platform that will be comprehensible for business stakeholders with limited technical skills.
Artificial Intelligence methods will further assist the proposed Development Environment by
providing smart auto-complete and service discovery features.

Before digging into the details of the solution, let’s

explore the history of software development to

better understand the rationale and the problems

that SmartCLIDE solves. Since the waterfall model

was described in the early ’70s, introducing a set of

consecutive or linear steps for developing software

(system and software requirements, analysis,

design, coding, testing, and operations), several

development paradigms have been described over

the last 50 years. Primary evolution of waterfall

was the V-life cycle, adopted by highly regulated

sectors since it included a quality assurance

layer that described a reverse waterfall process

for verification and validation activities. When

waterfall models were applied incrementally,

we talked about incremental models. These models,

though still linear, show the need to obtain an early

functionality provision to obtain feedback and,

therefore, try to reduce risk. For example, the Spiral

Model added a risk analysis phase in each iteration.

As another alternative to the rigid waterfall model,

Rapid Application Development was proposed to

deal with the flexibility of software development

but required regular access to users. The Rational

Unified Process (RUP) was the obtained result

of a work that started looking into why software

projects had failed and it went back to the spiral

model. RUP divided the development process into

four distinct phases each one involving business

modelling, requirements, analysis and design,

implementation, testing and deployment.

Agile + DevOps

However, despite all these attempts for more

efficient software project management, until

the late 90s many software projects of various

sizes evolved into enormous disasters with huge

budgets and time outruns. The need for a new

SmartCLIDE Market Requirements
By University of Macedonia

48@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

paradigm as a response to waterfall models led

to The Manifesto for Agile Software Development.

It was a turning point in software development

which brought together several of the values and

principles already seen. The four values upon which

the manifesto was signed are: (a) individuals and

interactions over processes and tools; (b) working

software over comprehensive documentation;

(c) customer collaboration over contract negotiation;

and (d) responding to change over following a plan.

In the agile way of work, software projects

should be delivered incrementally, piece by piece

where each piece is a fully functional unit of

software. Software is being developed by small,

robust, and self-organized teams which respond

quickly and interact efficiently with the external

environment. This is a smart way of working but

requires a re-organization of many aspects of the

software development lifecycle, infrastructure

and deployment operations being one of them.

If the team needs to build and deploy frequently

and quickly every new functional software unit it

needs to be able to do it with minimum interactions

and communication overhead with other teams

that are classically involved in these actions

(network, database, infrastructure, middleware).

This challenge led to the rise of a new area, the

DevOps (Development Operations).

Since the first time the software business heard of

DevOps in 2008, it has evolved really fast turning

the buzzword into a reality that is transforming

digital business all over the world. The philosophy

behind DevOps aims at demolishing the walls that

create operational silos in business, development

and operations/infrastructures creating an

environment where valuable work continuously

flows, there is a continuous feedback up and

downstream, and continuous improvement is a

common practice. Among many other practices,

the full autonomy and end-to-end responsibility of

software development teams can be considered

the cornerstone of DevOps. These practices mean

that software creation teams will have the full

responsibility to take an application to production:

from the specification of requirements/user-stories

to its deployment in a server. SmartCLIDE focuses

on DevOps organizations offering assistance at

all the stages of the software creation life cycle,

namely: specification and planning, creation,

verification, packaging, release, configuration

and monitoring. The main practices that back

autonomy and responsibility are the creation

of multidisciplinary teams (including staff with

business and operations knowledge), continuous

communication, an extreme automatization of

processes and the existence of a solid common

knowledge base.

Microservices

Apart from the software operations area,

Agile paradigm also transformed the software

architecture scenery with the introduction

of microservices. That’s because small,

self-managed teams are more likely to

develop small or medium-sized, autonomous,

self-contained software modules which

need a common execution platform along

with rules for inter-module communication.

This describes the microservices paradigm.

49@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

A microservices architecture is a development

methodology wherein you can fragment a single

application into a series of smaller services.

Microservices are developed around business

capabilities, and as such are independently

deployable with automated deployment

mechanisms. Related DevOps technologies can be

used to help these automations. Each microservice

is executing in its own process and interacting with

lightweight mechanisms with other microservices

or applications. This isolation and independence

results in minimal management of these

services, which are usually being built in different

programming languages and employ different data

storage technologies according to each element

requirement. Below, we discuss the main features

and benefits brought by microservice architectures.

Figure 15: Monolithic vs. Microservices architecture

Dynamic Scalability. Based on the development

of small isolated components, developer teams

can easily scale up or down based on the

requirements of a specific element. The flexibility

of microservices lets a system expand fast without

requiring a significant increase in resources.

A monolithic architecture would require scaling the

whole application. Each module in microservices

can scale independently through: (a) X-axis scaling,

by cloning with more memory or CPU; and (b) Z-axis

scaling, by size using shading.

Technology Flexibility. This refers to the

microservice architecture flexibility on its

technology stack that leads to eliminating the

constraints of vendor or technology lock-in and

platform dependency. Each microservice can be

built up using the software stack required for the

specific element. Language, framework, data

50@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

sources or any other dependencies required can

be provided from a container without affecting the

whole application design or the communication

between the microservices in the ecosystem.

Easier and shorter development cycles. These

are achieved through the important feature of

agility that further leads to productivity and speed,

smaller project development, ease of building

and maintaining apps, that are independently

DURS (deployed, updated, replaced & scaled).

Since each microservice is a separate project,

professionals can get involved in the process

more easily because they do not have to study

the system as a whole and they can work only

on their part. Decomposing the monolithic

structure into separate services, leads to team

decomposition into more small engineering teams

that work independently which increases agility.

The modern Agile approach is tightly connected

with practices as DevOps concepts, continuous

integration (CI), and continuous deployment (CD).

All of these practices allow for faster deployment,

problem-solving, and time to market. This type

of agility when combined with CI / CD tools, like

Jenkins, and their underlying pipeline configuration

capabilities, results in faster and smaller project

development life cycle procedures. Compared

to a microservices architecture, a monolithic

architecture hampers the Agile and DevOps

processes because of its tight connections

between each and every component.

Fault Isolation. Small isolated microservices

are less likely to affect the overall ecosystem

when failing. A monolithic architecture is rigid

when it comes to replacing functionalities or

making changes. Small changes in one place can

cause ripple effects, bugs and errors in the entire

system due to the extreme coupling. As such

microservices architecture improves replaceability

and upgradeability of the system.

Reduced Downtime / Quick Response-time.

Developers and DevOps could use another

service when components fail, and the application

continues its work independently. With the use of

related technologies that provide virtual servers,

containers, pods and clustering this architecture

offer reduced response downtime.

The reader can find more details on this topic in

the public deliverable D1.1-State-of-the-Art and

Market Requirements.

Quality and security in a
microservices world

Security Concerns in Microservices Architectures

Microservices are generally considered as a variant

of service-oriented architecture and fortunately most

aspects of security in microservice architecture

are similar to monolithic applications. However,

microservice architectural patterns introduce

specific security challenges and problems, which

should be treated differently. Based on the existing

literature review and best practices adopted by

many leading IT companies (e.g. Amazon, Netflix,

Spotify, Twitter) we have identified several areas

of security concerns and risk categories that have

arisen along with the microservice paradigm.

An overview of security challenges in microservice

51@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

architectures has been proposed in the form of a

hierarchical decomposition in 6 layers: hardware,

virtualization, cloud, communication, service/

application and orchestration.

Development of Secure Microservices

Microservices, as software products in nature,

need to be developed having security in mind

from the early stages of their development. Simply

ensuring the implementation and deployment

of mechanisms (either external or internal) that

enhance the protection of the microservices with

respect to important security aspects, including

availability, confidentiality, and integrity, is not

enough for fully protecting them against attacks.

Most of the software vulnerabilities stem from a

small number of common programming errors.

For instance, SQL injection and cross-site scripting,

which are listed both by OWASP and NIST as the

most dangerous and common vulnerabilities of

web services and applications, are caused by

lack of input validation/sanitization, which is a

relatively simple programming error to address.

Another source of security issues is the selection

of insecure third-party reusable components

and Application Programming Interfaces (APIs).

Appropriate tooling is required to help them avoid

the introduction of such security issues during the

SDLC, and therefore write more secure code.

Automatic Static Analysis (ASA) tools have been

proven effective in uncovering security-related bugs

early enough in the software development process.

They are applied directly to the source or compiled

code of the system, without requiring its execution.

In fact, automatic static analysis is considered an

important technique for adding security during

the software development process. Moreover,

static analysis is believed to be more effective in

detecting code-level vulnerabilities compared to

other dynamic testing approaches like penetration

testing and fuzzing, as it is observed to produce

significantly fewer false negatives.

Quality Assessment through Machine Learning

Machine Learning technologies have been applied

to resolve multiple and quite diverse research

problems such as defect management, cost/effort

estimation, management of design-time quality

attributes, recommendations for efficient project

management, and detection of security threats.

In terms of quality attributes, the most relevant ones

appear to be the improvement of maintainability

and functional suitability (i.e., correctness),

followed by security and business quality attributes.

Overall, the following practices can be mapped to

quality management:

Cost/Effort Estimation: Monetization is a key

concept in quality management. To this end, any

cost or effort estimation approach based on past

data can be considered as relevant to predict the

cost of applying refactoring or to predict the cost

of future maintenance effort. In this category of

Software Engineering problems special emphasis

is placed on studies that deal with software

maintenance effort prediction.

Management of Design-Time QAs and Defects: In

this high-level category, various related problems

have been identified. First, many studies focused

52@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

on change- and fault-proneness. These concepts

are closely related to interest probability, in the

sense that changes and faults lead to maintenance

activities that can accumulate interest. Additionally,

other studies focus on the detection of small

occurrences. Finally, any method that is used

for assessing or characterizing the levels of QAs

(e.g., maintainability) can be useful.

Requirements and Project Management

Recommendations: Many studies use ML to

provide recommendations to developers related

to which requirements shall be implemented first,

or which reported bugs shall be prioritized. Such

recommendations could be useful for Technical

Debt prioritization, by considering that artefacts

that are not expected to change (due to bug fixing,

or implementation of new requirements), shall not

be prioritized for design-time quality improvements.

Given the above, we can conclude to the following

baseline market requirements for the development

of the SmartCLIDE solution:

SmartCLIDE shall support SmartCLIDE should support SmartCLIDE may support

1. user-friendly GUI even for
non-technical users

2. visually intuitive interfaces
to help users with model
generation and training

3. implementation of coding-by-
example principle

4. the provision of abstractions
to minimize manual
intervention that are
required by the developers
to the source code for
implementing new features

5. the classification of services,
learning from code or
applying Machine Learning
algorithms

6. user stories, features
specification

7. specification of acceptance
criteria for functional and
non-functional requirements

8. the short iterations concept

9. Continuous Integration /
Continuous Development

35. generation of automatic
tests by natural language
interpretation of acceptance
tests

36. the provision of on-the-fly
suggestions on how to
improve the reusability and
maintainability of the system

37. SmartCLIDE may support

38. agile tools such as a Kanban
board

39. implementation of artefacts
for product and sprint
backlog management (e.g.

21. refactoring

22. easy configuration

23. the provision of metrics for
maintainability / reusability
at the service and the system
level

24. the extension of existing tools
for measuring maintainability
and reusability to capture the
metrics at the service level

25. the provision of solutions for
facilitating the identification
and elimination of critical
vulnerabilities that reside
in the source code of
microservices from the early
stages of their development

26. the provision of an easy non-
coding implementation for
DL usage (general problems)
depending on input data

27. the provision of code
blueprints (skeletons)
based on Gherkin inputs for
services implementation

28. the discovery and

53@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

(CI/CD)

10. automated testing in
differentflavours: Acceptance
Test-Driven Development
(ATDD) / Behavioral Driven
Development (BDD) /
Test-Driven Development
(TDD).

11. static analysis

12. working code as a source of
documentation

13. integration with run-time
monitoring tools

14. version control of software

15. cloud native IDE for cloud
native solutions

16. Business Process Modelling
capabilities

17. service discovery and search

18. service integration through
the online dashboard

19. a wrapper which isolates
user from Deep Learning (DL)
complexity as far as possible,
releasing developers from
boilerplate code generation

20. the provision of coding
blueprints which can serve
as a base for more complex
tasks, making code more
reusable and easier to
understand

Kanban or Scrumban boards)

40. implementation of artefacts
facilitating waterfall life
cycles

composition of basic services
based on ontologies

29. scalability of processing
capability

30. replicability of architecture to

increase flexibility

31. fault tolerance and reliable

32. security through isolation /

dependability

33. the monitoring of
maintainability and reusability
of the project under
development

34. dynamic software
configuration

54@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Service Creation
By University of Macedonia

Before starting the development process, several

steps are required to setup the development

process:

• Creating a code repository, for e.g., a GitLab

project

• Creating a CI/CD pipeline, for e.g., GitLab CI/

CD or a Jenkins job

• Configuring them both to interact with each

other

During code development, e.g., for the creation of

a new service the developer needs to interact with

several tools:

• for writing code

• for collaborative development

• for performing tests and verifying the results

• for evaluating the quality and maintainability

of the code

• for monitoring the progress of the project

• making the service invokable by being

packaged into an image

Considering the actual coding part as the central

point of software development, the main UI for

service creation should be the IDE. Several code

development tools were evaluated, and Eclipse

Theia was selected as the final solution. Following

our previous way of thinking, all the other service

creation functionalities should be accessible

through the Eclipse Theia IDE to minimize

distractions and make the whole process easier

and more efficient.

Starting with the creation of the necessary structure

for development, a new widget was developed

for the IDE.

Here the user can input the required information,

S martCLIDE Service Creation aims to deliver a faster, easier, and more user-friendly
solution than from-scratch development of services. The approach aims to
automate several steps and easily provide functionalities to developers, in a manner

that enhances productivity and minimizes distractions and time-consuming interactions with
external tools. SmartCLIDE analyzes the required steps a developer has to perform so as to
deliver a fully functional service, in order to come up with ways to fine-tune the flow.

Figure 16: Service Creation Widget

55@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

and the Service Creation component will create and

configure a new GitLab project. For now, there is

also the ability to use Jenkins as the CI/CD server.

In that case, the GitLab project and the Jenkins job

pairing is done by the component automatically

in the background, thus relieving the user from

an otherwise dull and time-consuming sequence

of steps. After the completion of the structure

creation, the user is presented with a new Git URL.

Cloning the Git repository using Theia’s Git

commands, the user can begin to code. Through

Theia’s integrated Git, the process of staging,

committing, and pushing code changes is made

easy. Considering that the code repository is either

paired with a Jenkins job or handled by GitLab CI/

CD, every code push triggers a pipeline. During the

pipeline execution, tests and code analysis can be

executed automatically.

The next step, that provides valuable information

to the user, is the evaluation of the quality and

maintainability of the code. This is achieved by

using another newly created widget that acts as a

middleman between the IDE and the SmartCLIDE

backend services.

Provides valuable information
to the user, is the evaluation of
the quality and maintainability
of the code.

Figure 17: Technical Debt Principal widget

56@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

The user provides the required information, in this case, the Git URL of the project, and receives the results

of code analysis. Depending on the user-specified steps of the pipeline, the analysis process can vary in

execution time. The request is passed to the SmartCLIDE backend services, where the Reusability Index,

Technical Debt Principal, and Technical Debt Interest are calculated for the project.

As a final step, again using the pipeline, you have the ability to package the finished project to a Docker image

ready for deployment. Of course, considering that the above are part of an early prototype, there is pending

research and experimentation in order to find an optimum and user-friendly approach.

Figure 18: Technical Debt Interest widget (per File and Evolution)

57@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

T he rapid rate of technological and digital advancement requires the building of
related software, which is a time-consuming process. SmartCLIDE includes the
advantages of Artificial Intelligence (AI) and Cloud Computing. These technologies

can help the developer overcome the complexities associated with multi-platform
software products.

SmartCLIDE Deep Learning Engine
By AIR Institute

Merging artificial intelligence with existing IDE

functionality can bring new opportunities in the

most involved area in software development tools.

This improvement can include improving current IDE

features, such as code suggestion or code search,

resorting to recommender systems to provide more

accurate results to developers. Moreover, With the

advent of online code repositories and improved

data collection, it has become possible to add more

intelligent functionalities in most of the automation

tasks, such as service classification.

Concerning Intelligent software engineering,

theoretical [1][2] and empirical [3][4] works have

shown that software intelligence has been widely

used in software development. Accordingly,

SmartCLIDE has proposed the DLE component,

which is responsible for feeding smart Assistants

by intelligent models. DLE subcomponent

responsibility can fall into the following categories:

• Context monitoring specification in order to

provide suggestions

• AI code completion for generating one-

line code using language modelling The

acceptance test set suggestion for giving the

user a set of tests defined in Gherkin format.

• Classification of Web services based on their

meta-data in order to reduce service selection

search space

• Code repository suggestion is responsible for

making suggestions for the user to facilitate

commits to the git repository.

• S er v ice deployment env i ronment

recommendations in order to produce

suggestions for the sizing of the

 deployment environment.

• BPMN Items suggestions aim to help

automation in selecting the next node/item

in the BPMN workflow

58@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Component name Description

Service Classification

Model

The Service classification sub-component is responsible for

classifying new services. There are two important resources for new

services. First, the newly created services are created by SmartCLIDE

users using the service creation module. Second, the new observation

by service discovery module.

Template-based agent

Code Generation

Code Generation

Auto-complete Model

This sub-component is responsible for one line automatic code

generation based on DL learning model, which is trained by available

public source codes.

This subcomponent is responsible for generating code based on

internal templates. The API returns related code snippets based on

templates to implement the workflow represented in BPMN in low

code. The first version of this API is designed for finding Java codes.

Code Repository

Suggestions Model

This wizard is responsible for generating suggestions to the user to

facilitate commits to the git repository. Receiving information from

the monitoring system, and with the help of the DLE, it will determine

the best time to commit to the git repository.

Deployment environment

suggestions Model

This sub-component is responsible for generating suggestions for

the sizing of the deployment environment

Acceptance test

Suggestions Model

The acceptance test set suggestion system, based on collaborative

filtering techniques, is responsible for providing the user with a set of

tests defined in Gherkin format to be applied to the workflow defined

in the BPMN and help verify if the expectations are met

BPMN Items

suggestions

The BPMN Items suggestion system consists of automatically

selecting the next node/item in the workflow being modeled during

service composition in BPMN format.

59@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Predictive Model tool

API

This wizard, as a subcomponent of the DLE in SmartCLIDE, is

accessible through a RESTful API in several stages, structured in an

ideally linear flow that in practice allows iterative backtracking. Its

objective is to guide the user in the creation of a predictive model.

References

[1] “JAXEnter, What Theia is all about.” [Online].

Available: https://jaxenter.com/theia-ide-efftinge-interview-134467.html

[2] “What are Message Brokers?,” Aug. 11, 2021.

https://www.ibm.com/cloud/learn/message-brokers (accessed Sep. 04, 2021).

[3] “What is Usability Testing?,” The Interaction Design Foundation.

https://www.interaction-design.org/literature/topics/usability-testing (accessed Sep. 07, 2021).

[4] “JUnit 5.” https://junit.org/junit5/ (accessed Sep. 07, 2021).

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

60@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE User Interface
By UNPARALLEL

T his article describes the design and current development progress of the three main
components of the User Interface: Toolbox, Workbench, and Run-time Simulation
& Monitoring Console.

The front-end user interface was designed considering the three main concepts in which SmartCLIDE’s

functionalities can be grouped:

• Workflows – result from combining services using Business Process Model andNotation (BPMN)

diagrams.

• Services – resources available through an URL that can be integrated to createcomplex scenarios.

• Deployments – instances of services or workflows that run on specific environments(e.g., Amazon

Web Services).

Workflows

The actual design of the workflow requires a BPMN editor. The elements are dragged onto the drawing

area and the fields from the “Properties” and “Functionality” tabs of each node/task must be completed.

Throughout this process, the Smart Assistant aids the developer by suggesting nodes as the workflow is

being designed.

Figure 19: BPMN Editor

61@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

A task can be easily implemented using an existing service. For that, SmartCLIDE provides the Service

Discovery tool which receives details of new registries, analyses them, and suggests services that match the

meta-data provided by the developer. The default usages include deployable versions, services connected to

the web or services in source code.

At any time, the user can change to the “Code Editor” tab, inspect, and manually edit the code being generated

by SmartCLIDE using an instance of the Theia code editor

Figure 20: Eclipse Theia code editor

Figure 21: Security analysis page

62@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

When the workflow is completed, the developer can test it.

SmartCLIDE allows the user to run in the background a security analysis on the workflow, as well as assessing

its vulnerability, namely identifying potential security breaches.

Figure 22: Vulnerability assessment page

Services

As in the case of the workflows, in the Services page, the user can filter the services by developer

(“My Services”, “Shared with Me” or “Public Services”) or any keyword (i.e., name, URL, description, or license)

or value (update date) written in the search bar. Finally, this page is the starting point for creating, editing, or

removing services as well.

Figure 23: The main page of the services

63@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE also provides an Eclipse Theia instance, as a source code editor. For the services’ implementation,

the Smart Assistant helps the developer with code auto-completion, …/…

Figure 24: Code auto‑completion

…/… live template recommendations, …/…

Figure 25: Live template recommendation

…/… comments generation (and service testing automation (using JUnit).

64@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 26: Comments generation

Deployments

On the Deployments page, the user can monitor his own deployments and deployments shared with him. In

addition, through this page, the user can create new and edit or remove past deployments.

Figure 27: Main page of the deployments

Before deploying the workflow/service, the user can see a cost comparison that assists in

choosing the best cloud provider and then, go back to the deployment configuration page.

It is worth mentioning that the cost simulation service will only be able to provide accurate values at the

component level.

65@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 28: Main page of the cost comparison service

The user can choose the metrics to be automatically monitored during runtime in the deployment configuration

page. From the main page of deployments, the user monitors the selected metrics. The data of the metrics

are collected by the Runtime Monitoring & Verification and the Context Handling components.

Figure 29: Runtime metrics monitoring and visualization page

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design”.

66@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In this context, the SmartCLIDE toolkit tries to bring

most service development tasks together and

also add automation techniques. This automation

includes rule-based or AI-based approaches, which

are presented as functionality to help developers.

This article aims to introduce SmartCLIDE

DLE models, a subset of intelligent software

development that refers to applying intelligent

techniques to software development. Proposed

models try to provide a learning algorithm with the

information that data carries. SmartCLIDE data

include internal data history and external online

web services identified from online resources. The

following figure demonstrated the big picture of

SmartCLIDE external service identification.

SmartCLIDE DLE Component
By AIR Institute

T he interest in building software is increasing with the move towards online
businesses. However, this process demands the building of customised software
for the target business, which is time-consuming. Accordingly, several models and

concepts have emerged to create software faster. One of the major topics is software reuse,
which is the process of utilising existing components to build new software. By increasing
online services in public resources and service registries, software reuse has captured the
attention of engineers. These online services include a wide range of software, applications,
or cloud technologies that use standard protocols to communicate and exchange data
messaging. Moreover, developer task automation can improve composing available online
services. Automation includes concepts and techniques that apply to developer tasks to
increase productivity and reduce human errors.

These functionalities allow
developers to invest much
more time into their domain
problem and software business
logic rather than manual proper
service identification and
development.

67@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 30: SmartCLIDE External Service Identification

A combination of the existing benchmark

dataset and collected data enable SmartCLIDE to

implement a range of intelligent learning models.

The embedded learning models in SmartCLIDE

seek to improve service development main tasks,

which are:

1. Identifying system requirements

2. Finding and discovering service registries

and providing a pool of services

3. Classifying the discovered services to identify

a list of candidate services with the same

functionality for particular tasks

4. Ranking selected services with the

same functionality

SmartCLIDE DLE functionality has been embedded

in order to improve automation in mentioned tasks.

The selected AI approaches have demonstrated

proper performance in software intelligence.

Language modelling based on the sequence to

sequence models, recommender systems, learning

from existing code, and source code analysis are

some instances, to name a few.

Moreover, the collected data type, service metadata,

or related text directs us to mostly take advantage

of text process trends, including deep learning

methods such as encoder-decoder models.

These models have impacted rapid developments.

Therefore, SmartCLIDE has taken advantage of

Transfer Learning and uses pre-trained models. The

following table lists some popular deep learning

models in software intelligent literature.

68@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

BiLSTM, the most promising model for learning long-term

dependencies. BERT base model has 110M parameters whereas

BERT large has 340M parameters.

DistilBERT

In summary, for increasing productivity with real-world data, some of the AI-based models in SmartCLIDE use pre-

trained language modelings like BERT and GPT2. These models have trained on enormous data on the internet

and have demonstrated acceptable results in both research and industrial communities. Yet, the individual

classifiers are still considered based on available data size. The best practice for the training process is to use

customised local data; nevertheless, in the beginning, we used some benchmark datasets in software intelligence

academic works and available open source data. Training time, resource consumption, data storage capacity, and

real-time interface interaction are other factors that DLE has to deal with to design and implement

learning models.

2020 The smaller BERT version to consider resource usage and

performance, has been introduced, which is smaller and runs

60% faster than BERT .

Pre-Trained-
Models

Year Description

OpenAI’s GPT-3

OpenAI’s GPT-

Neo

2020

2021

GPT-3 is the 3rd version release of GPT-2. This model is over 10x

the size of its predecessor, GPT-2)

Microsoft published in September 2020 that it had authorised

“exclusive” use of GPT-3; others can still use the public API to

receive output, but only Microsoft has control of the source

code. GPT-Neo goal is to replicate a GPT-3 sized model and open

source it to the public

The model is that it is trained in a database of 8 million web

pages. GPT2 base model has 117M parameters, GPT2-medium

has 345M and the GPT2-large 774M parameters.

BERT (Bidirectional Encoder Representations from Transformers)

was published in 2018 and Google has announced a language

model in October 2019. The significant feature of BERT is using

2019

2019Bert

OpenAI’s GPT-2

Table 2: Popular Related Pre-trained AI models

69@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

BACKEND SERVICES

This section presents the Backend Components and Services:

• Source Code Repository choice,

• Services Discovery, Creation and Management subcomponents,

• The Security Assurance module and its 2 mechanisms: Vulnerability Prediction and Quantitative

Security Assessment.

• The Message Oriented Middleware component in charge of the inter-component communication with

the SmartCLIDE platform.

• The User Access Management subcomponent.

• The Deployment workflow and its third-party services, and the CI/CD infrastructure.

• Tool support for architecture pattern selection in Cloud-centric service-oriented IDEs

• Runtime monitoring and Verification

• Vulnerability prediction

• Testing Cloud-based applications

70@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Source Code Repository
By Netcompany-Intrasoft

A consequence of the dominance of Git in the market is that the majority of
development tools have excellent support for it as a version control system, either
built-in or available as a plugin. Regarding the tools selected to be reused by

SmartCLIDE, Eclipse Theia includes built-in git support, while workflows defined in jBPM are
stored internally in Git and can be synchronized to an external Git repository.

While Git on its own provides excellent support

for version control, there are several services that

provide additional functionality on top, including

GitHub, GitLab, and Atlassian Bitbucket. Some

common additional features are:

• A web-based user interface to support git

repository configuration as well as other

value-added services

• Support for code review

• Support for CI/CD pipelines

• For SmartCLIDE, the consortium has chosen

to use GitLab since it is available as a

pre-packaged Docker image that can be

deployed either on-premises or in the cloud

and has a number of other features that make

it useful for integration in the SmartCLIDE

environment, such as:

• Integration with external security providers

for access management, and Keycloak in

particular, which is the chosen User Access

Management platform

• RESTful and GraphQL APIs that can be used

by other components of SmartCLIDE

• Native support for CI/CD

• Hierarchical organisation of Git repositories

using “Groups” and “Subgroups”

As a proposed structure, the top-level SmartCLIDE

group contains sub-groups named “Services”

and “Workflows”, each of which contains GitLab

projects that contain a Git Repository plus other

data for handling additional features such as merge

requests and CI/CD.

https://git-scm.com/
https://www.jbpm.org/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

71@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 31: Hierarchical Group Structure in GitLab

There are a number of source-code artifacts

required to implement a workflow in the SmartCLIDE

environment, which should all be version-controlled:

• Workflow definitions and metadata: Each

workflow definition has its own repository

on the GitLab server. Data stored in version

control for the workflow includes:

• Metadata regarding the workflow (e.g., name,

description, and service dependencies)

• Gherkin description of the workflow

• BPMN model of the workflow.

• Service Source Code: In cases where

a service is written from scratch, assembled

using a template, or otherwise modified from

existing source code, the service should

have its own Git repository on the GitLab

server. It is proposed to build a library of

service definitions, grouped separately from

the workflow definitions, since each service

has the potential to be re-used in different

workflows.

If you wish to learn more about this aspect of the

SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud

IDE Design“.

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf
https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

72@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Discovery, Creation and Monitoring
By AIR Institute

Discovery of Services and Resources

T he Discovery of Services and Resources backend module is responsible for
collecting data on services discovered through the use of crawlers, maintaining an
internal registry of services, as well as serving queries/requests for services based

on service usage details and service code requests. This component communicates with the
DLE (: Deep Learning Engine) to classify services and receive updates.

The Service Discovery component will have five sub-components:

Crawlers Collect information from web service listings, service code repositories,

service registries and provide data ready to be stored in the registry.

Internal Services Index

Manager

Allows to store, search and classify both discovered and new created

services. This component communicates with the DLE classifier and

uses the Elasticsearch API to perform searches, along with its internal

SQL service registry.

Subcomponent
name

Functionality

Repository of discovered

services

Store the records discovered by the crawler tool in .csv files while

executing the retrieval requests, serving as a backup of the discovered

services until they are uploaded to the internal database.

New service Creation Allows new services, created from the Service, Composition and

Testing component to be stored and classified in the service

registry index.

Search Services Using an internal SQL record and the Elasticsearch API, this component

will accept search requests that it will delegate to the internal registry

and then to Elasticsearch, returning the ranked services to the user

based on the search.

73@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Creation, Composition
and Testing

The Service Creation subcomponent will be

responsible for handling the creation of a new

service. The component will create the required

infrastructure for the development process by

automatically creating and configuring functions

such as version control and continuous integration.

The above will be achieved by leveraging the already

existing GitLab API. Apart from aiding with the

creation process, the component will accompany

the user through it by providing useful functionalities

through interaction with other components and

external tools. The user will have the ability to

request functionalities by notifying Deep Learning

Engine or Software Security. Furthermore, the

user will be able to fetch analysis data from the

Reusability Index and TD Principal and Interest

subcomponents. Finally, an API will be exposed,

that will allow the usage of certain functionalities

when called by either the Eclipse Theia extension,

JBPM Workbench or any other type of UI. The

overall purpose of the component is to aid during

the development process and ultimately lead to a

better implemented final result.

Runtime Monitoring & Verification

When services are created in SmartCLIDE the

Runtime Monitoring & Verification (RMV) may

be employed to generate a runtime monitor for

the service. Runtime monitors supplement, at

run time, other quality assurance measures such

as testing and verification that are employed at

development time. Particularly in SmartCLIDE,

when automated methods are used to generate,

or assist in the generation of, code for applications

with minimal human intervention, it is possible for

there to be semantic “misunderstandings” between

component services composed to create the new

service, or unexpected interactions of features

of the components, resulting in unexpected and

undesirable behaviors. Runtime verification may be

able to quickly intercept misbehaving services and

take a predetermined defensive or remedial action.

The monitors created for a service may be

reviewed by the user and disabled or additional

monitors specified and generated to be run

with the service. In addition, custom monitoring

services may be created as SmartCLIDE generated

services, to serve other user applications or

SmartCLIDE components.

The RMV has explicit support for security and

context-sensitivity SmartCLIDE component

in addition to synthesized monitoring for

created services and the creation of bespoke

monitoring services.

The RMV will incorporate and build upon several

existing technologies as well as implement

new features and integrate them in a novel way

to support the runtime quality assurance goal

of SmartCLIDE

74@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 32: Runtime Monitoring and Verification Component Diagram

Among the incorporated extant technologies are:

• The overall architectural framework of

command processor, server structure, RESTful

APIs, and testing from an implementation of

the Next Generation Access Control standard

[1] by The Open Group [2].

• The Event Processing Point (EPP) from

TOG-NGAC an adaptation and extension of

the EPP will form the core of the Monitoring

Framework component

• The runtime verification extension [3] to the

symbolic model checker [4] will form the core

of the Monitor Creation component

• A recent audit API addition to TOG-NGAC will

be adapted for the Audit Agent.

The RMV will include newly developed components

for SmartCLIDE including:

• Create SMV model K for the service to be

monitored from service specifications used

by SmartCLIDE service creation

• Create proper ty specif ications in

Linear Temporal Logic (LTL) from

service specifications

• Logging Agent for f lex ib le and

configurable logging

• Notification Agent to provide flexible

and conf igurable not i f icat ion to

SmartCLIDE components

• Monitor Library to hold various facts and rules

needed by other components and modules

of RMV

We provide a brief description of the function

of each of the main subcomponents in the

following table:

75@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Subcomponent
name

Functionality

Monitor Creation Monitor creation utilizes service specifications of the service to be

monitored to build a behavioral model and a set of essential properties.

Monitor Library This component is a database of various facts and rules used by other

modules of the RMV system. Information contained in the Monitor

Library includes: .

– SMV (: Symbolic Model Verifier) specification patterns

– LTL (: Linear Temporal Logic) property patterns

Monitoring Framework This component is the hub and control system of RMV. It contains

the Event Processing Point (EPP) which receives events and current

property verdicts from the monitors running with their associated

services. Received events are processed according to the Monitoring

Framework Configuration Data which includes Event-Response

Packages (ERP) that define event patterns and associated responses.

Received events are checked against cached event patterns. When

a pattern match occurs the associated response from the event

response cache is executed by the Event Response Execution

function.

Audit Agent Security auditing services comprising the abilities to:

– Define a set of auditable events

– Select a subset of the auditable events to be collected in the audit
log

– Define the format of the audit log record

– Generate an audit log record in response to a reported event –
Store audit records in a persistent audit log file through the Logging
Agent

– Manage the audit service and audit log files

– Generate audit alarms to be delivered through the Notification
Agent

76@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Logging Agent Filter and store log messages in persistent log storage according to

the Logging Configuration Data

Notification Agent Send direct notifications to SmartCLIDE components according to

the Notification Configuration Data

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design”.

References

[1] “International Committee for Information for Information Technology Standards – Cyber security technical

committee,” 1. American National Standard for Information Technology Next Generation Access Control

(NGAC).” ANSI, INCITS 565-2020, April 2020.

[2] “NGAC policy tool, policy server, and EPP Release note for v0.4.7 development version,” Rance DeLong,

The Open Group, July 2021.

[3] A. Cimatti, C. Tian, and S. Tonetta, “NuRV: A nuXmv Extension for Runtime Verification,” in Runtime

Verification, Cham, 2019, pp. 382–392. doi: 10.1007/978-3-030-32079-9_23.

[4] R. Cavada et al., “The nuXmv Symbolic Model Checker,” in Computer Aided Verification, Cham, 2014, pp.

334–342. doi: 10.1007/978-3-319-08867-9_22

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

77@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Security
By CERTH

S oftware security is a critical consideration for software development companies
who want to provide safe and dependable software to their clients [1]. Modern
software applications are typically accessible through the internet and handle

sensitive data. As a result, they are continually vulnerable to harmful assaults. Exploiting a
single vulnerability can have far-reaching repercussions for both the end-user (e.g., information
leakage) and the organization that owns the affected software (e.g., financial losses and
reputation damages) [2]. As a result, the software industry has shifted its focus towards
creating proactive approaches that may give developers suggestive information about the
security quality of their programs by detecting susceptible hotspots in the source code.

The Vulnerability Prediction (VP) mechanism

is one such system that enables the prediction

and mitigation of software vulnerabilities early

in the development cycle. By assigning limited

test resources to potentially risky items, VP

models (VPM) can be utilized to prioritize testing

and inspection efforts. Several VPMs have been

developed throughout the years that use a variety

of software elements as inputs, such as software

metrics, static analysis warnings, and a text mining

approach known as bag-of-words (BoW) [1], [3].

Although these models have shown encouraging

outcomes, there is still room for improvement.

Static analysis warnings contain a high number

of false positives in addition to severe alarms.

The BoW technique appears to produce better

results than static analysis alerts and the usage

of software metrics; however, it is overly reliant on

the software project used for model training. As a

result, current research has switched its attention

to more complex approaches for detecting

patterns in source code that signal the presence

of a vulnerability. They concentrate on collecting

information from a specific software application’s

raw source code or from abstract representations

of its source code, such as their Abstract

Syntax Tree.

Using the raw text of the source code in the form

of sequences of instructions, this work creates

deep-learning (DL) models capable of predicting

whether a software component is susceptible

or not, employing approaches from the fields

of natural language processing (NLP) and text

classification. We used approaches from the NLP

discipline for this aim. The source code is seen

as text, and the vulnerability assessment work,

like sentiment analysis, is regarded as a text

classification problem. So, using NLP techniques

such as Bidirectional Encoder Representations

from Transformers (BERT) [4], data pre-processing

and transformation to sequences, and training DL

models (e.g., recurrent neural networks) suitable

78@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

for analyzing sequential data, we detect potentially

vulnerable components using a binary classifier

trained primarily on text token sequences from the

source code. Furthermore, software measurements

acquired by static code analyzers, in conjunction

with text mining approaches, might be utilized to

improve the prediction performance of the models.

Figure 33: Software Security Assurance Module

Subcomponent
name

Functionality

Quantitative Security

Assessment

Responsible for assessing security level of software applications

based on Security Assessment Model

Vulnerability Prediction Is responsible for predicting security issues (i.e., vulnerabilities)

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

79@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

References

[1] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static Analysis-Based Approaches for Secure

Software Development,” in Security in Computer and Information Sciences, Cham, 2018, pp. 142–157. doi:

10.1007/978-3-319-95189-8_13.

[2] E. Gelenbe et al., “NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart

Mobile Ecosystem,” in Information Sciences and Systems 2013, Cham, 2013, pp. 369–378. doi: 10.1007/978-

3-319-01604-7_36.

[3] S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and Discovery Using Machine-

Learning and Data-Mining Techniques: A Survey,” ACM Comput. Surv., vol. 50, no. 4, p. 56:1-56:36, Aug. 2017,

doi: 10.1145/3092566.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding,” in Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), Minneapolis, Minnesota, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

80@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Intercommunication
By CERTH

M essage Oriented Middleware (MOM) component is responsible for
inter-component communication with the SmartCLIDE platform. The MOM is
designed and implemented as a message broker which is a piece of software

that enables applications, services, and systems to communicate with one another to
exchange information [1]. This communication is achieved by translating messages between
formal messaging protocols, allowing independent services written in different languages or
implemented in various platforms to interact with each other.

SmartCLIDE’s MOM component offers standardized

means of handling the data flow between the

components of the SmartCLIDE platform.

Thus, developers using the SmartCLIDE platform

can focus on the core logic of the application.

MOM can validate, route, store, and deliver messages

to the appropriate destinations, allowing senders

to issue messages without knowing where the

receivers are and whether they are active or not, thus

facilitating the decoupling of services and processes

within systems.

There are several message brokers available, with

popular choices being Apache Kafka and RabbitMQ.

For the implementation of the MOM component,

we have used the official RabbitMQ Docker image

[2] in order to run the RabbitMQ server inside

a Docker container. This is the easiest way to have

a RabbitMQ instance up and running and enhances

portability. For making RabbitMQ available to the

other SmartCLIDE components, we have set up

a RESTful API with the help of Spring Boot, thus

offering HTTP access to the message broker.

MOM component diagram is presented in the

next diagram. The MOM component resides in the

center of the system architecture and comprises

three sub-components, namely the Message

Checker, the Message Transformer, and the

Message Router. The Message Checker is the first

point of interaction when communicating with the

MOM component and verifies the validity of the

incoming/outcoming messages while the actual

routing of the messages is implemented by the

Message Router sub-component. The Message

Transformer modifies each message accordingly

so that it can be parsed at both ends (publisher

and consumer).

81@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Subcomponent
name

Functionality

Message Checker MoM will be able to check if the exchanged messages, either at the

sender’s or at the receiver’s end, comply with a specific format.

Message Transformer MoM will transform the data/messages from the sender’s native

format to the receiver’s native format.

Figure 34: MOM Component Diagram

Message Router MoM should support several message routing policies and message

delivery guarantees (e.g., at-most-once, and exactly-once).

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

References

[1] “What are Message Brokers?,” Aug. 11, 2021. https://www.ibm.com/cloud/learn/message-brokers

(accessed Sep. 04, 2021).

[2] “Rabbitmq – Official Image | Docker Hub.” https://hub.docker.com/_/rabbitmq (accessed Sep. 06, 2021).

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

82@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

User Access Management

U ser Access Management (UAM), also known as identity and access management
(IAM), is the act of defining and managing the roles and access privileges of
individual network entities (users and devices) to a variety of cloud and on-premises

applications. Users include customers, partners, and employees, while devices include
computers, smartphones, routers, servers, controllers, and sensors. The core objective of an
IAM solution is to assign one digital identity to each individual or a device. Once that digital
identity has been established, the IAM solution maintains, modifies, and monitors access
levels and privileges through each user’s or device’s access life cycle.

In today’s complex compute environments, IT

departments are under increased regulatory and

organizational pressure to protect access to

corporate resources. As a result, they can no longer

rely on manual and error-prone processes to assign

and track user privileges. IAM automates these

tasks and provides a seamless way to manage

user identities and access all in one place. The core

responsibilities of an IAM system are:

• Verification and authentication of users

based on their roles and contextual

information such as geography, time of day, or

(trusted) networks

• Capturing and recording of user login events

• Managing and provision of visibility of the

business’s user identity database

• Managing the assignment and removal of

users’ access privileges

• Allowing system administrators to manage

and restrict user access and monitor changes

in user privileges

The adoption of an Identity Management system

provides a wide range of benefits to organizations,

such as:

• Secure access: access privileges are

granted according to the selected policy,

and all individuals and services are properly

authenticated, authorized and audited

• Reduced risk: companies have greater control

of user access, which reduces the risk of

internal and external data breaches

• Ease of use: the use of an IAM framework can

make it easier to enforce policies around user

authentication, validation and privileges

• Reduced IT costs: businesses can operate

more efficiently by decreasing the effort, time

and money that would be required to manually

manage access to their networks

• Meeting compliance: an effective IAM system

facilitates businesses to confirm compliance

with critical privacy regulations such as HIPAA,

the Sarbanes-Oxley Act and GDPR

If you wish to learn more about this aspect of the

SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud

IDE Design“.

By CERTH

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf
https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

83@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Deployment and CI/CD

Deployment and deployment monitoring service

This is a very first approach where we will only consider:

GitLab + “SmartCLIDE Interpreter + Jenkins + Docker + Kubernetes/AWS

The deployment and deployment monitoring microservice makes use of the following elements to perform

the deployment and monitoring tasks, from the GitLab-ci pipeline file until the deployment is monitored as it

runs on the Kubernetes cluster, be it on any cloud infrastructure.

Figure 35: Set of Applications Diagram. Workflow

RoleElement name

Kairos interpreter The Kairos interpreter is a microservice developed by our partner

KAIROS whose main function is, from a GitLab-ci file, to obtain a

Jenkins pipeline file.

Jenkins Jenkins was chosen as the CD/CI engine since it is the main target

of the Kairos interpreter as a CD/CI engine. In addition, since it is

open-source software, it can be deployed on the developer’s machine

in the development and testing tasks of the deployment microservice.

As more and more organizations are using Docker to unify their build

and test environments for their applications, Jenkins allows us to

By Netcompany-Intrasoft

84@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Docker registry Docker Registry is an application that manages to store and deliver

Docker container images. Registries centralize container images and

reduce build times for developers. Docker images guarantee the same

runtime environment through virtualization, but building an image can

involve a significant time investment. Docker registry will be used as

a central repository of images once they are built. It will be from this

service from where the Kubernetes deployment will obtain the image

of the containers to be deployed in the cluster.

Kubernetes cluster Because Kubernetes is an open-source project, you can use it to run

containerized applications in any environment without having to change

your operational tools. A large community of volunteers maintains and

improves Kubernetes software. In addition, many other vendors and

open-source projects create and maintain Kubernetes-compatible

software that you can use to enhance and extend your application

infrastructure. The scope of the service also includes the use case

of obtaining information about the status of the service while it is

running in Kubernetes. Some of this data can be RAM memory in use,

network information, or CPU usage. It is assumed that a Kubernetes

cluster is running on any of the clouds, such as AWS, Azure, or Google

Cloud Platform.

interact with Docker through default Docker support in its pipelines.

On the other hand, Jenkins pipelines allow images to be built from the

Dockerfile found in the main folder of the software project.

SmartCLIDE CI/CD

The proposed basis for the SmartCLIDE CI/

CD infrastructure is the built-in CI/CD capability

provided natively by the chosen version control

system, GitLab. For the Continuous Integration

(CI) component of this, there are several areas

to consider:

• What elements of the system are subject to CI

• How CI integrates with the development

strategy

When considered at the level of individual services,

CI is a requirement for those services which

are defined within the SmartCLIDE source code

repository, i.e., services which are developed from

scratch, modified from a template, or generated as

85@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 36: CI Server & Testing and QA Component Diagram

source code with SmartCLIDE tooling. CI on GitLab

is generally configured by means of a configuration

file, namely the GitLab-ci.yml file, at the root of

the corresponding source repository. Within this

configuration file, the various stages of the build

pipeline are defined. A build pipeline might typically

involve the following stages:

• Build – compile the code in the repository

• Unit test – run unit tests

• Package – package the service into a

deployable unit

• Integration test – run integration tests

• Deploy – deploy to an environment

For Continuous Delivery (CD) at the workflow

definition level, the flexibility afforded by the GitLab

CD functionality, with built-in support for Docker

and Kubernetes deployments and the ability to run

arbitrary scripts, may serve as the basis for the

deployment of the composed service.

CI Server & testing

Component

Perform automated build, test, and packaging of services from

source code.

FunctionalitySubcomponent
name

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read the public

deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://smartclide.eu/wp-content/uploads/2021/12/SmartCLIDE_D3.1-Early-SmartCLIDE-Cloud-IDE-Design_1.0.pdf

86@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Tool Support for Architectural Pattern Selection in
Cloud-centric Service-oriented IDEs

S oftware architecture is a central part of software engineering and plays a crucial role
in the success of software applications, both in terms of business and engineering
aspects. Deciding on a specific software architecture requires careful analysis of

the software application’s requirements and is not trivial.

Architectural patterns are general design

structures that have been used successfully in

software architecture design. They provide rules

and guidelines to describe high-level software

components and the interrelation between them,

and address commonly occurring issues in

software architecture design, such as limitations in

software performance, availability or minimization

of business risk. Architectural patterns are

similar to software design patterns but have a

broader scope.

Software architecture design is typically made in

the early stages of a software development life

cycle and is very crucial for the quality, success

and further management of the software. Selecting

an architectural pattern is a challenging task for a

software architect. It requires not only technical

knowledge about these patterns, but also expertise

in deciding which pattern is the most suitable

architecture for a software system (considering its

requirements).

While modern software development practices

benefit from strong tool support offered by

IDEs (features like build automation, debugging,

refactoring, code search, continuous integration

and continuous deployment), the need for a support

system for architectural pattern selection is still not

sufficiently met in practice. In particular, software

engineers could greatly benefit from tool support

that assists them in their architectural pattern

decision process.

To address this issue we developed a framework

for architectural pattern selection (APS) that can

be integrated as a tool support feature in IDEs. Our

framework currently supports the following six

common architectural patterns:

1. Layered architectural pattern

2. Event-driven architectural pattern

3. Microkernel architectural pattern

4. Microservices architectural pattern

5. Service-oriented architectural pattern

6. Space-based architectural pattern

In order to provide tool support for the

decision-making process of architectural pattern

Selecting an architectural
pattern is a challenging task
for a software architect.

By ATB Bremen

87@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

selection, certain information about the software

design and requirements must be acquired. Our

framework for architectural pattern selection uses

four specific categories of high-level information

about the application to be developed and the

architecture for it. These categories are as follows:

• Application domain: The general domain

of the software application such as

web-based systems, distributed systems,

cloud computing applications, mobile

applications etc.

• Application properties: High-level properties

of the software application such as

specifications of application components or

business constraints.

• Non-functional requirements: General

operational specifications of the software

application such as maintainability,

performance, portability, reliability and

security.

• Architectural features: High-level properties

of the software architecture such as

specifications of architecture component

communication, component interoperability

and data volume.

These categories are explored through a survey

where at least one question per category can be

asked to a software developer/architect. This

survey is designed to collect both the background

information about the application and the

preferences in terms of the operational capabilities

of the application as well as the desired features

of the architecture.

A scoring system associates every survey item to

each of the six supported architectural patterns,

to provide an evaluation. These values indicate

how strongly an architectural pattern is suitable

to the given specification. This evaluation is based

on a comprehensive state-of-the-art analysis

of architectural patterns and their relation to

application domains and architecture requirements.

The scoring values are used to calculate the total

value of each architectural pattern. The pattern

with the highest total score indicates the most

suitable pattern based on the data input. The top

three highest ranking patterns and their ranking

can be suggested for the user’s consideration.

The APS framework is implemented as a backend

service that provides a REST API for the survey

content and its evaluation. The API implementation

is independent of the survey content and the

specific scoring values used for the evaluation.

The survey content is prepared and stored as a

JSON object that can be retrieved and used to create

and present it in an IDE. The scoring values used

for the evaluation are also stored as a JSON object.

Both of these JSON objects are configurable within

the API if desired. This makes the backend API generic

in terms of API functionality and it can be integrated

in IDEs to offer tool support for architectural

pattern selection.

The APS framework and its backend API are

currently being integrated within the SmartCLIDE

research project. Architectural pattern selection

is supported in the SmartCLIDE IDE as part of the

service creation process using the user frontend

of the IDE. The service creation flow begins with

88@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

the user starting to create a new service, which is

followed by the selection of a Git system to be used

together with corresponding credentials. After the

user provides the details of the service to be created

the next step is architectural pattern selection.

This step provides assistance to the user if the user

decides to choose an architectural pattern for their

service. This assistance is optional and is provided

via the APS wizard.

The APS wizard first provides a list of supported

architectural patterns to the user to choose from.

The user can choose one pattern from this list and

proceed to the next step. In case the user does not

know which architectural pattern to choose, they

can further use the APS wizard to receive a list of

suggestions which patterns would be most suitable

for their service based on high-level information

about their service that they can provide at this

stage. If the user decides to skip the selection or

the application of an architectural pattern, the user

front end finishes the service creation.

The backend API will be extended with the

implementation of the architectural pattern

application that finalizes the service creation flow

in the IDE. The APS framework will be evaluated

in various industrial use cases of the SmartCLIDE

project. Based on the use case results, the survey

content and evaluation values can be improved and

re-configured in the IDE if necessary. Further future

work includes increasing the number of supported

architectural patterns. Currently, all supported

architectural patterns are individual patterns. It

would be desirable to support combinations of

individual patterns as well.

89@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Runtime Monitoring and Verification (RMV)
By OpenGroup

S martCLIDE offers services to accelerate the creation and deployment of Cloud
solutions by providing the ability for non-programmers to construct applications
and new services using smart automation. One of the backend services provided

by SmartCLIDE is runtime monitoring and verification (RMV) which in conjunction with
automated testing is applied to assure the quality of the created services. In this paper we
describe the objectives of RMV, and provide an overview of the approach and the benefits.

SmartCLIDE Quality Assurance

SmartCLIDE constructs new services according

to the user’s specifications from pre-existing

and bespoke components. Supplementing the

construction of new services, SmartCLIDE’s

strategy for quality assurance (QA) of

user-constructed services includes both

development-time and runtime quality assurance

for functional and non-functional properties.

In addition to the expected functional behavior

of a service, key characteristics such as security,

safety, privacy, resilience and reliability are general

categories of runtime quality attributes that may

be required of the service. Runtime QA is applied

along with design-time QA, development testing,

verification and qualification testing to assure that

the needed quality attributes have been achieved.

Assurance of the correctness of a service may be

addressed largely by the manner of its construction,

giving rise to the term correct by construction.

To achieve it a rigorous methodology is required,

typically supported by automation³ and tools.

By automating the construction process certain

sources of potential flaws may be systematically

eliminated. In SmartCLIDE automation extends

to AI-powered assistance in the selection and

composition of components. SmartCLIDE

can already make some claims to correctness

by construction because the automation is

systematic. However, the details of the construction

methods may not be rigorous enough to extend

correctness by construction to every functional

or non-functional claim that could be made for a

SmartCLIDE-constructed service.

Whilst, runtime QA is also a concern for entirely

human-fashioned software artifacts, it may be even

more beneficial for software that is constructed

without human involvement and scrutiny of every

design and implementation decision. By reducing

the development effort through automation some

of the detailed expert human scrutiny that the

service development would otherwise receive

will likely not occur. Subtle semantic anomalies

and “corner cases” may go undetected when

automation uses service specifications to construct

service implementations from diversely sourced

90@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

and specified components, and only surface when

run-time execution behaviors are observed.

Complementary Quality
Assurance Methods

Among the methods that that could have been

utilized for quality assurance of SmartCLIDE created

services are: correctness by construction, formal

verification (FV), automated testing, and runtime

verification RV. All of these methods, except for

formal verification, are employed in SmartCLIDE.

FV provides construction-time assurance that

increases confidence that runtime behavior will not

include unwanted effects by exploring all possible

executions a priori.

The application of FV, even the “fully-automated”

kind, is typically expensive: being laborintensive

and requiring specialized expertise. It must be

re-performed whenever the model is changed.

Furthermore, it typically only verifies the model

(an abstraction) of the implementation as opposed

to the actual executable implementation. Due to

these considerations we do not further consider FV

as a viable routine activity in SmartCLIDE.

Conventional testing is one of the standard

methods of discovering and correcting the

sources of errant behaviours, and this method is

also applied in SmartCLIDE by doing automated

testing for SmartCLIDE-created services in

addition to the unit and integration tests of the

SmartCLIDE components themselves. Testing of

SmartCLIDE-created services has the benefit that

the actual service implementation is exercised in

the tests rather than a model of the implementation

as would be the case in FV. Testing involves

identification of a finite number of test scenarios

and test cases. As always, the issue with finite

testing of a reasonably complex system, which

has a potentially, and practically infinite number

of distinct behaviours, is one of confidence in

the adequacy of the testing, in particular that of

chosen test cases and the test data. When test

cases and test data are chosen automatically an

additional source of automation-induced error or

incompleteness is a source of adequacy concern.

Another potential source of runtime misbehavior

has nothing to do with the construction or the

functionality of a service but with the assumptions

that underlie, possibly implicitly, the implementation

of a component or a service. The implementation

is only valid as long as these assumptions are

satisfied and maintained. When assumptions are

violated, either through incorrect composition of

components, or through dynamically changing

conditions at runtime, the implementation is likely

to misbehave or completely fail.

Runtime monitoring and verification (RMV) is an

aspect of the SmartCLIDE QA strategy that is used

primarily at run time but also may be beneficial in

the latter stages of development.

RMV is able to check the monitored service at every

step to confirm that it’s behavior in the current

run is consistent with its specifications and the,

necessarily limited, results of prior finite testing.

³ Here “automation” or “automated” are used for processes that are fully or partially automated.

91@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

One of the main strengths of runtime verification is

that it has the potential to detect a deviation from

the required behaviour due either to an incorrect

implementation of the specified behavior or to the,

possibly dynamic, invalidity of an assumption.

Assurance of the runtime behaviour is addressed

by validating that the service actually exhibits

behavior consistent with the user’s specification

and with development-time test results, and that the

assumptions made about the runtime environment,

which were made at design time and thus built into

the construction of the service, continue to be valid

as the service executes.

Runtime Monitoring & Verification

Figure 37 shows an overview of the components

of the SmartCLIDE RMV subsystem. The RMV

subsystem interacts with other SmartCLIDE

components through Message Oriented Middleware

(MoM) or direct IPC, and uses an external tool,

NuRV [CTT19b], to generate property monitor state

machines. Property monitors are synthesized

from a formal model of the nominal behavior of

the created service and a specification of required

properties using the method of assumption based

runtime verification (ABRV) [CTT19a].

Figure 37: RMV Subsystem Overview

These components include:

1. Monitor Creation - Uses a Service Specification

provided from SmartCLIDE along with elements

contained in the Monitor Library to construct

a property monitor using the NuRV monitor

synthesis tool, and a configuration vector for

the Monitor Sensor. It stores information about

the created monitor in the Monitor Library.

2. Monitor Sensor - A component with versions

implemented in various programming

92@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

References

[CTT19a] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime verification with

partial observability and resets. In Bernd Finkbeiner and Leonardo Mariani, editors, Runtime Veri cation,

pages 165{184, Cham, 2019. Springer International Publishing.

[CTT19b] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Nurv: A nuxmv extension for runtime

verification. Berlin, Heidelberg, 2019. Springer-Verlag.

languages that provides presence for the

monitor within the SmartCLIDE-created

service. When the service starts the Monitor

Sensor is customized with specifics from the

configuration vector. Subsequently the Monitor

Sensor generates messages to Monitor Event

Processing conveying information about

the configured variables it shares with the

monitored service.

3. Monitor Event Processing - Receives

messages from the Monitor Sensor, which

it processes according to the configuration

for that monitor that is stored in the Monitor

Library. The configuration may indicate that

the values of logical conditions, based on

the values of variables within the monitored

service, are to be sent to a NuRV property

monitor that will return a verdict on whether

the monitored property is satisfied, violated,

or (as yet) unknown. The result may be sent

to other SmartCLIDE components that have

registered for notifications.

4. Auditing, Logging, and Notification - Provides

the ability to distribute monitoring data and

results, to record security-relevant (or other

property related) events in a persistent log, and

to provide a consolidated auditing, logging and

notification service to registered SmartCLIDE

or application components.

5. Monitor Library - Contains global definitions

and patterns for monitor construction as well

as information about the specific monitors that

have been constructed. The monitor library is

access both at monitor construction time and

at monitor execution time.

6. RMV User Interface within the SmartCLIDE

Service Creation UI - An optional user interface

that can be used by a service developer to

modify the configuration of a service monitor,

to enable/disable monitoring actions, add/

delete monitored variables and properties, and

regenerate a modified monitor. Without the UI

such changes can also be achieved by editing

the generated monitor’s configuration vector.

In addition to the ability to monitor created

services to assure that they operate within their

specifications, the RMV framework provides

the capability to construct bespoke monitoring

services using the RMV monitor sensor to gather

runtime data, that may be used in arbitrary

ways by other system services or as part of

application services.

93@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Vulnerability prediction based on Text Mining and BERT
By CERTH

Vulnerability Prediction – Importance and Challenges

B uilding secure software is highly important for both the end users and the owning
enterprises. Nowadays, software controls critical daily activities, and therefore a
security breach could lead to important implications both to user security (or even

safety), and to a company’s reputation and finances. To this end, software development
companies have shifted their focus towards the security-by-design paradigm in order to build
software that is highly secure from the ground up. In order to achieve this, several tools
are employed during the development process, which enables detection and elimination of
potential vulnerabilities.

One important mechanism that facilitates the

identification of vulnerabilities in software is

vulnerability prediction. Vulnerability prediction

is responsible for the identification of security

hotspots, i.e., software components that are likely

to contain critical vulnerabilities. This is achieved

through the construction of vulnerability prediction

models (VPMs), which are mainly machine learning

models that are built based on software attributes

retrieved primarily from the source code of the

analysed software (e.g., software metrics, text

features, etc.). The results of the vulnerability

prediction models are highly useful for developers

and project managers, as they allow them to better

prioritise their testing and fortification efforts

by allocating limited test resources to high-risk

(i.e., potentially vulnerable) areas.

Among the existing solutions, text

mining-based VPMs have demonstrated the best

predictive performance. The majority of the text

mining-based models that have been proposed in

the literature so far are based on the concept of Bag

of Words (BoW), which is actually a vector with the

tokens (i.e., keywords) that are found in the source

code along with the number of their occurrences,

as well as on the concept of word token sequences

(utilising also word embedding techniques for

their representation), which corresponds to the

sequences of the instructions in the analysed

source code. Despite their promising results,

these solutions have not demonstrated perfect

•

•
Vulnerability prediction is
responsible for the identification
of security hotspots, i.e., software
components that are likely to
contain critical vulnerabilities.

94@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

predictive performance, which could allow them to

be used reliably in practice, and therefore there is

room for improvement. Recently, more advanced

concepts have started being investigated in the

literature in order to further enhance the predictive

performance of text mining-based VPMs. One

interesting direction which has recently started

gaining the attention of the research community

[]-[], is the examination of whether the adoption of

transformers, such as the Bidirectional Encoder

Representations from Transformers (BERT) and

its alternatives, could lead to more accurate

vulnerability prediction.

To this end, we developed deep-learning (DL)

models capable of predicting whether a software

component is vulnerable, using the raw text of the

source code in the form of sequences of instructions,

utilising methods from the field of natural language

processing (NLP) and text classification. In other

words, we focused on building text mining-based

VPMs utilising the popular concept of word token

sequences and deep learning. We also examined

whether the adoption of BERT could lead to

sufficient vulnerability prediction models.

What is BERT?

Bidirectional Encoder Representations from

Transformers (BERT) is a transformer-based

machine learning technique for natural language

processing (NLP) pre-training developed by Google.

BERT makes use of Transformer. In its vanilla form,

Transformer consists of two separate mechanisms:

an encoder that reads the text input and a decoder

that generates a prediction for the task. Because

the goal of BERT is to generate a language

model, only the encoder mechanism is required.

The Transformer encoder reads the entire sequence

of words at once, as opposed to directional

models, which read the text input sequentially

(left-to-right or right-to-left). As a result, it is

regarded as bidirectional, though it would be

more accurate to describe it as non-directional.

This feature enables the model to learn the context

of a word based on its surroundings (left and right

of the word).

95@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 38: Transformer encoder

As can be seen by the Figure above, the input of BERT

is a series of tokens that are embedded into vectors

before being processed by the neural network. The

output is a sequence of H-dimensional vectors,

each vector corresponding to an input token with

the same index. The vectors that are produced by

BERT can be utilized for building machine learning

models for any classification problem, including

vulnerability prediction, as we investigate in the

present work.

Vulnerability Prediction Models
using Text Mining and BERT

For the purposes of the present work, we utilised

two popular vulnerability datasets proposed by the

National Institute of Standards and Technology

(NIST) and the OWASP, which contain examples

of vulnerable and clean software components

written in Java and C++ programming languages.

For the case of C/C++ we utilised the Juliet dataset

proposed by NIST, which contains 7651 source code

files, 3438 of which are considered as vulnerable

and the rest 4213 are considered as clean. For the

case of Java, we utilised the OWASP Benchmark,

which contains 1415 vulnerable class files and 1325

class files considered as clean.

For each dataset, the source code files were

initially cleansed (i.e., comments were removed,

literals were replaced with generic values, etc.)

and subsequently tokenized in order to retrieve the

 The Transformer encoder is described in detail in the figure below:

96@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

sequences of their tokens. In order for these vectors

to be used for building vulnerability prediction

models, they need to be turned into numerical

values, since the majority of the machine learning

algorithms, including neural networks that are our

main focus, operate on numerical inputs. More

specifically, integer encoding was employed in

order to turn the tokens into integers, and then the

embedding vectors were produced. The embedding

vectors are, in fact, the numerical representation

of the text tokens, which can be used as inputs

for our models.

In order to construct VPMs based on the selected

datasets, we have used a pre-trained BERT model.

Actually, it is the BERT for sequence classification

pre-trained model. It belongs to the category of

BERT base models with respect to their size. The

model parameters, both those of the pre-trained

model and those derived after fine-tuning it for the

case of vulnerability prediction that we investigate

in the present analysis are shown below:

Number of layers 12

ValuesParameters

Hidden size 768

Total parameters 110M

Learning rate 2e-5

Number of epochs 2-4

Batch size 2

The VPMs that were implemented both for the

Java dataset and also for the C++ dataset were

then evaluated with respect to their predictive

performance. For the evaluation of the models, we

employed the 10-fold cross-validation technique.

As a measure of predictive performance, we

decided to use the F2-score. The reasoning behind

the selection of this evaluation metric is that the

F2-score takes into account both the Recall and the

Precision of the produced model, but puts more

emphasis on the Recall, which is more important

for vulnerability prediction since it is important

for a VPM not to miss existing vulnerabilities. The

results are summarized in the table below:

97@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Java 70.01

F2 score (%)Model

Cpp 78.73

The results of the experiments indicate that the

models can identify vulnerabilities in the software

to a satisfying degree. More specifically, the

F2-score in both cases was found to be above 70%,

which is considered sufficient in the literature, and

for the case of C++ the F2-score is close to 80%,

which is considered high. This suggests that the

utilisation of BERT may lead to VPMs with sufficient

predictive performance. In the rest of the project,

we will further examine the capacity of BERT to be

used in vulnerability prediction. More specifically,

(i) additional datasets will be considered in

order to investigate the generalizability of these

observations, (ii) BERT alternatives like codeBERT

will be also examined in order to see if more

code-related models lead to better results, and (iii)

a comparison between models utilising BERT and

models based simply on text mining approaches

(e.g., BoW and token sequences) without dedicated

transformations will be conducted.

98@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Testing Cloud-Based Applications
By Kairos DS

C loud-based solutions are all the rage these days. The cloud approach is becoming extremely

popular in many business areas due to advantages such as scalability, enhanced productivity,

better traffic and transaction management, and significantly lower equipment costs. Moreover,

a cloud-based solution makes digital operations more streamlined and provides businesses of any size with

greater flexibility.

This migration of applications to the cloud has

made software testing become an essential part

of the business cycle. The switch to distributed

and component-based applications, which is the

basis for the touted flexibility and scalability, has

also introduced additional layers of complexity

and potential points of failure and communication,

making testing cloud-based systems a vital

business function.

Types of Tests

Generally speaking, every software application

development must involve several types of testing

distributed along the lifecycle of the product.

The purpose of all such testing is to ensure the

product meets both functional and non-functional

requirements and to deliver a high-quality end

product that will delight users. Typically, the types

of testing that any application should go through

are the following:

Functional testing

Functional testing ensures that the product actually

provides all the services and functionalities as

advertised and that the business requirements are

being met. The main types of functional testing are:

• Component and Unit Testing: This kind of

test is performed by developers to validate

specific functionality for each unit of an

application. During unit testing, each unit of

code and component is tested in isolation

to make sure that it works as intended and

provides the expected results.

• Integration Testing: This ensures that the

modules of an application are working fine

and helps verify the combined functionality.

Integration tests allow operational commands

and data to act as a whole system, rather

than as individual components. This type of

testing is especially relevant to UI operations,

operation timing, API calls, data formats, and

database access.

• Acceptance Testing: These tests are

performed by a selected group of end-users

that will be given access to a functional version

of the application and will validate whether the

application is good enough (accepted) or not.

In other words, they indicate if the application

meets the business objectives.

99@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

However, for cloud-based products, it’s essential

to make sure that the product (or service) not only

meets its functional requirements but also the

non-functional ones. So a strong emphasis needs

to be laid on non-functional testing as well.

Non-functional testing

Non-functional testing focuses on verifying cloud

computing characteristics and features:

• Security Testing: A cloud offering must

guarantee that the data and resources of the

system are protected from any unauthorized

access, but it also must be protected from

threats or misuses that can take the entire

system down. This can be complex and, at a

minimum, involves the following:

◊ Vulnerability scanning: This is done through

automated software to scan a system

against known vulnerability signatures.

◊ Security scanning: Identifies network

and system weaknesses, and provides a

basis for defining solutions for reducing

these risks. Both manual and automated

scanning can be performed.

◊ Penetration testing: This kind of testing

simulates an attack from a malicious

hacker. It involves the analysis of a particular

system to check for potential vulnerabilities

to an external hacking attempt.

◊ Risk assessment: This is an assessment

of the security risks that is made at a

broad organizational level, involving

analysis of the software itself, as well as

the processes and the technologies used.

Risks are classified as Low, Medium, and

High. The result of this testing is a list of

recommended controls and measures to

reduce the risks.

◊ Ethical hacking: This involves hacking

into the software systems to understand

vulnerabilities. Unlike malicious hackers,

who steal for their own gain, the underlying

intention is to expose security flaws.

• Multi-tenancy Testing: Multi-tenancy refers

to a cloud-based service that accommodates

multiple clients or organizations. The service

is typically customized for each client

and provides data and configuration level

security to avoid any access-related issues.

A cloud-based offering should be thoroughly

validated for each client whenever multiple

clients are to be active at a given time.

• Performance Testing: Performance testing

checks the speed, response time, reliability,

resource usage, and scalability of a cloud

offering under an expected workload.

A cloud-based offering should be “elastic”,

allowing for the increase or decrease

of on-demand resource usage, while

maintaining a desired throughput level. The

goal of performance testing is to eliminate

performance bottlenecks in the software.

There are many types of performance tests.

These are some of the most common:

◊ Smoke tests verify that the system can

handle a minimal load without problems.

◊ Load tests are primarily concerned with

assessing the performance of the system

100@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

in terms of concurrent users or requests

per second.

◊ Stress tests and spike tests assess the

limits of your system and stability under

extreme conditions.

◊ Soak tests evaluate the reliability and

performance of a system over an extended

period of time.

• Availability Testing: Availability testing

provides a measure of how often any given

software is actually on hand and accessible

for use. Cloud offerings must be available at

all times. It is the responsibility of the cloud

service provider to ensure that there are no

abrupt downtimes. This kind of testing is

primarily based on observation of the system

being used along with the Quality of Service

(QoS) level guaranteed by the service provider.

• Disaster Recovery Testing: This is a measure

of the time it takes for a cloud application

to recover from a disastrous failure. It may

encompass certain hard measures like

rolling back databases or deployments. In

the case of a failure, recovery time must be

low. Verification must be done to ensure the

service is back online with minimal adverse

effects on the client’s business.

• Interoperability Testing: Any cloud application

must work in multiple environments and

platforms. It should also have the capability

to be executed across many cloud platforms.

It should be easy to move cloud applications

and platforms from one infrastructure

(as a service) to another infrastructure.

Testing Throughout the Software
Development Life Cycle

Now, it becomes obvious that not all of those tests

can be carried out at the same time, nor by the

same set of persons, nor at the same stage of the

project. However, when and how we apply all of

these testing techniques plays a critical role in the

quality of the resulting product.

If we look at the typical Software Development

Life Cycle (the process of building software while

ensuring the quality and accuracy of the software

being built), it defines a series of stages and

procedures. Each stage leads to the next step

and produces results that move the development

towards a completed product. Stages are typically

defined as follows:

• Planning stage (also called the feasibility

stage) is the phase in which developers plan

for the upcoming project. Here, the problem to

be solved and project scope are defined, along

with determining project objectives.

• Requirements analysis stage, includes

gathering all the specific details required for

a new system, as well as determining initial

prototype ideas.

• Design and prototyping stage, where

developers will outline high level application

requirements, along with more specific

aspects, such as:

◊ User interfaces

◊ System interfaces

◊ Network and network requirements

101@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

◊ Databases

• Development stage, where developers

actually write code and build the application

according to the earlier design documents

and outlined specifications.

• Testing stage, where software is tested to

make sure that there aren’t any bugs, and that

the end-user experience will not be negatively

affected at any point. During the testing

stage, developers will go over their software

with a fine-tooth comb, noting any bugs or

defects that need to be tracked, fixed, and

later retested.

• I n te g r a t io n a n d i m p le me n t a t io n

(or deployment) stage, where the system

will be integrated into its environment and

eventually deployed. After passing this stage,

the software is theoretically ready for market

and may be provided to any end-users.

• Operations and maintenance stage, where

developers are responsible for implementing

any changes that the software might need

after deployment, as well as handling issues

reported by end-users.

But how do the different kinds of tests relate to

these stages? The following table attempts to

represent the existing relationship between the

SDLC stages and each type of testing.

102@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Requirements Analysis Stage _

Design and Prototyping Stage Process testing

Software Development Stage Unit testing

Component testing

Software Testing Stage Acceptance testing Exploratory

testing Regression testing

Security testing

Implementation/Integration Integration testing

Smoke testing

Looking at the stages, one could think that all tests

will happen on the so-called “testing stage”. This is

mostly true in a typical waterfall model of software

project management, where a phase-only begins

when the previous one has already finished. The

fact that tests are left to the later stages when

development is –theoretically- finished, is usually

the main cause of project failures following this

methodology, due to the difficulty (or even the

impossibility) of applying proper corrections at

such a late stage.

Fortunately, modern software development

methodologies, especially the agile ones, attempt

to fix this with two breaking changes:

• short feedback loops, i.e. show working things

early and repeatedly, so that any

• misunderstanding or deviation can be

tackled soon.

• test from the beginning, so that any defect can

be found and fixed as soon as possible.

Operations and Maintenance Stage Performance testing

Compatibility testing

Recovery testing

Availability testing

Planning Stage _

Kind of testsPhase

103@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In short, agile methodologies look for integrating all

— or as many as possible — of the activities inside

the development iterations, because everything

done within one iteration provides feedback for the

next iteration.

In this light, we can see that all functional testing

is actually carried out by developers during

the development phase. Following the modern

methodologies, developers leverage techniques

like TDD (Test-Driven Development) for crafting

unit tests, component tests, and integration tests,

which also help them get good internal quality.

They also write regression tests to ensure that any

previously fixed bug does not come to life again.

Acceptance tests for each task are also included

to ensure that the functionality works and is

properly implemented.

All of these types of tests are not only fully covered

and automated, they are perfectly assumed by

the developers and completely integrated into

their regular day-to-day work. This means that

the development team gets quick and frequent

feedback and information on these aspects, and

are able to respond immediately to any incident

related to them.

However, in the non-functional part, the situation is

not so clear. There are certain kinds of tests that

have already been adopted by the development

teams. Examples include aspects like multi-tenancy

or data access control, for which tests are already

usually developed as part of the regular component

tests.

On the other hand, aspects like availability testing

or disaster recovery testing, which are less of a test,

are usually not activities present in the day-to-day of

the development team. The availability of a service,

being a measure of how the service behaves over

time, becomes a mark on the service monitoring

activities rather than a development task. And

disaster recovery requires a complete contingency

plan that rarely fits the development team’s tasks.

These kinds of “tests” cannot be easily integrated

into a development workflow.

Others, like security and performance testing, are in

an intermediate adoption stage.

Regarding security, it is now relatively common that

development teams integrate a static code analysis

tool in their Continuous Integration system, which

analyzes the code based on a pre-set collection of

rules looking for common errors and design flaws.

But it also provides relevant information regarding

possible security holes or weaknesses that

appear or can be inferred directly from the source

code. However, this is only a small part of what a

comprehensive security testing suite should be.

Penetration testing, system security scanning, and

auditing, along with ethical hacking among others,

should also be part of this process. However, most

of these activities are still manual and cannot

104@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

be better automated as part of a development

workflow.

Finally, talking about performance testing, it turns

out that it’s a kind of testing which is all too often

left for later stages of the development, taken

as an afterthought, and even left to users for

validation. This is a practice that, when applied to a

cloud-based application, can severely damage the

image of both the application and the company

behind it. The main reasons for this are usually:

• the need for having par ts of the

system developed.

• the difficulty of generating enough load on the

system based on human testers alone.

Obviously, a functional system is needed to be

able to actually perform this test. But then again,

following modern development methodologies,

that occurs during the first stages. On the other

hand, there are available tools that help create

the number of virtual users (i.e. bots) needed to

generate load on the system. These are scripted

sequences of steps intended to mimic the behavior

of a real user (or maybe just to make some calls to

an API). The funny thing about this is that once there

is a script to simulate one user, it’s just a matter

of configuring the script execution to generate the

needed load for the test.

SmartCLIDE’s Take

The SmartCLIDE project seeks to foster and

promote modern agile methodologies. The aim

is to democratize ownership of testing as well as

software Quality Assurance among the whole

development team, making everyone responsible

for the quality of their own developments. With

that in mind, we are building a tool that will provide

developers with plenty of utilities to build high

quality software, offering the best support for

each stage of development. Being a cloud-based

tool, and looking specifically after cloud-oriented

developments, we have put special extra attention

on some critical points. According to the analysis

presented earlier, testing is supported right from

the process definition stage, going through unit test

generation and code recommendations, all the way

up to code analysis and deployment.

Since that is quite common among IDEs nowadays,

we wanted to go one step further by helping

to integrate some of those activities related to

non-functional requirements of cloud offerings.

So, in SmartCLIDE, developers will find the following

interesting features:

• Security analysis integration, including

reporting of metrics, weaknesses detected,

and improvement points.

• Performance testing integration, including a

test generator that helps create the test suite.

• Technical debt cost analysis, to inform about

the estimated cost of fixing the detected

technical debt left in the code.

• Deployment cost estimation, to help decide

whether a cloud provider is, economically

speaking, a suite for the needs.

105@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

About SmartCLIDE

The SmartCLIDE project enables

organizations on the path to digitalization

to accelerate the creation and adoption of

Cloud solutions.

The innovative smart cloud-native

development environment will support

creators of cloud services in the discovery,

creation, composition, testing, and

deployment of full-stack data-centered

services and applications in the cloud.

This project has received funding from the European Union’s Horizon 2020 research
and Innovation programme under grant agreement No 871177

