

“The Stairway to Cloud”

This project has received funding from the European Union’s Horizon 2020 research
and Innovation programme under grant agreement No 871177

1

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Content

Content ... 1
Figures .. 2
Tables ... 2

PROJECT CONSORTIUM .. 3

INTRODUCTION .. 4

Context and motivation ... 4
Challenge .. 4
Solution .. 5
Impact .. 5
Benefits for the targeted users .. 6

LET'S LAY THE FOUNDATION ... 7

Cloud Computing in a nutshell ... 8
Machine Learning and Deep Learning: A power couple .. 11
SmartCLIDE: a new cloud-native IDE .. 15
Service Discovery in a Nutshell .. 17
Programming By Example .. 22

OUR SCENARIOS OF USE ... 25

About LoRaWAN communication services .. 26
Enhance IoT-Catalogue with an integrated Cloud IDE ... 29
Provide a Quick Demonstration for a Customer .. 31
Optimizing Resources ... 34

DEEP DIVE .. 36

SmartCLIDE Innovative Approaches ... 37
SmartCLIDE Market Requirements .. 40
SmartCLIDE Service Creation ... 45
SmartCLIDE Deep Learning Engine ... 48
SmartCLIDE User Interface ... 50
SmartCLIDE DLE Component .. 55

BACKEND SERVICES .. 58

Source Code Repository ... 59
Service Discovery, Creation and Monitoring ... 61
Security ... 64
Intercommunication... 66
User Access Management .. 68
Deployment and CI/CD... 69
Tool Support for Architectural Pattern Selection in Cloud-centric Service-oriented IDEs 71
Runtime Monitoring and Verification (RMV) ... 74
Vulnerability prediction based on Text Mining and BERT ... 78
Testing Cloud-Based Applications .. 81

https://creativecommons.org/licenses/by/4.0/

2

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figures
Figure 1: Pizza Analogy .. 9
Figure 2: Perceptron .. 13
Figure 3: Deep Learning Engine and Services .. 14
Figure 4: The Self‑Registration Pattern ... 18
Figure 5: The Third‑Party Registration Pattern ... 18
Figure 6: A Service Description .. 19
Figure 7: Client-Side Discovery .. 19
Figure 8: Server-Side Discovery ... 20
Figure 9: A low-power wide-area network (LPWAN) .. 26
Figure 10: Monolithic vs Microservice architecture .. 27
Figure 11: Deploying an application to a Kubernetes cluster.. 27
Figure 12: : Real-time communication platform system ... 28
Figure 13: IoT Catalogue .. 29
Figure 14: SmartCLIDE research problems identification .. 38
Figure 15: Monolithic vs. Microservices architecture ... 41
Figure 16: Service Creation Widget ... 46
Figure 17: Technical Debt Principal widget .. 47
Figure 18: Technical Debt Interest widget (per File and Evolution) .. 47
Figure 19: BPMN Editor ... 50
Figure 20: Eclipse Theia code editor .. 51
Figure 21: Security analysis page ... 51
Figure 22: Vulnerability assessment page ... 51
Figure 23: The main page of the services .. 52
Figure 24: Code auto-completion .. 52
Figure 25: Live template recommendation ... 52
Figure 26: Comments generation .. 53
Figure 27: Main page of the deployments .. 53
Figure 28: Main page of the cost comparison service ... 53
Figure 29: Runtime metrics monitoring and visualization page .. 54
Figure 38: SmartCLIDE External Service Identification ... 56
Figure 30: Hierarchical Group Structure in GitLab .. 59
Figure 31: Runtime Monitoring and Verification Component Diagram 62
Figure 32: Software Security Assurance Module... 65
Figure 33: MOM Component Diagram .. 67
Figure 34: Set of Applications Diagram. Workflow.. 69
Figure 35: CI Server & Testing and QA Component Diagram .. 70
Figure 36: RMV Subsystem Overview .. 76
Figure 37: Transformer encoder .. 79

Tables
Table 1: Micro-planning per task and relevant problems ... 38
Table 2: Popular Related Pre-trained AI models ... 56

https://creativecommons.org/licenses/by/4.0/

3

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Project consortium

https://creativecommons.org/licenses/by/4.0/

4

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Introduction

The SmartCLIDE project enables organizations on the path to digitalization to accelerate the
creation and adoption of Cloud and Big Data solutions. The innovative smart cloud-native
development environment will support creators of cloud services in the discovery, creation,
composition, testing, and deployment of full-stack data-centered services and applications in
the cloud.

Context and motivation
The SmartCLIDE research project aims to bridge the gap between on-demand business
strategies and the lack of qualified software professionals by creating a new cloud native IDE
that makes it easier to develop and deploy cloud services. The project is funded by the
European Union’s Horizon 2020 research and innovation program, and involves a consortium
of 11 partners from Germany, Greece, Luxembourg, Portugal, Spain, and the United Kingdom.

SmartCLIDE extends Eclipse Theia to provide a development environment that makes it easy
to create, compose, test and deploy data-centric full-stack services and applications in the
cloud. In addition to providing high levels of abstraction at all stages (development, testing,
deployment and execution), SmartCLIDE makes it easy for IaaS and SaaS service self-
discovery. The project covers the architecture, front-end and back-end services of the cloud-
based IDE.

Challenge
In this context, when companies face the creation or composition of new services for their
clouds, they are having three alternatives, each one being subject to different
problems/limitations:

1. Development of services from scratch enclose a high complexity due to the wide
variety of technologies that shall be used in the whole stack. It is expensive and
time consuming.

2. Creating new services by composition: Existing marketplaces are tightly coupled to
IaaS and PaaS providers, and they are not always uniformly classified or well
documented, so the discovery of valuable and secure services are mostly a manual
process and its validity is demonstrated by trial and error.

3. Pricing models of public cloud providers are very complex since they combine
different variables depending on the type of service. These variables can be time
of usage, resources used (memory, storage, processing capacity), thousands of
predictions obtained (in the case of machine learning algorithms), volume of data
transferred and many more. This fact makes the calculation of costs extremely
difficult to predict, and therefore to control.

https://creativecommons.org/licenses/by/4.0/

5

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Solution
Eclipse OpenSmartCLIDE project originated from the SmartCLIDE project. The concept for the
IDE1 and the architecture2 are detailed in this document. All services developed within
SmartCLIDE are open-source and are licensed under the Eclipse Public License 2.0 scheme.

 OpenSmartCLIDE is based on Eclipse Theia, which provides all of the tools necessary for
development. Theia consists of a rich interface with a vast range of features that accelerate
deployment of cloud services, improve their quality, and expand the skills of novice and
experienced developers.

The main features of OpenSmartCLIDE include:

1. Life cycle support. Software follows a life cycle, from feature specification to
solution deployment. OpenSmartCLIDE provides the specific tools required at each
life-cycle stage. For example, at the development stage, OpenSmartCLIDE provides
data sources, data transformations, graphics visualization artefacts, and general-
purpose abstractions and patterns that can be combined to implement features.

2. Insightful source code monitoring. OpenSmartCLIDE includes visualization
features that help developers gain deeper understanding of the source code. It
dynamically shows the meaning of expressions or code flow at low levels of
granularity. It also allows developers to compare different software states, perform
state changes that are reflected dynamically, and create new abstractions that can
be easily reused.

3. CI/CD integration. OpenSmartCLIDE enables integration with widely used CI/CD
tools such as GitHub and GitLab.

The Eclipse OpenSmartCLIDE also includes innovative features that leverage the power of a
deep learning engine:

4. Development by demonstration and text notation. OpenSmartCLIDE
automatically retrieves resources that are considered relevant for the new
development. The end user can use text notation to enhance the description of the
retrieved behaviour or algorithm. The deep learning engine then uses these
notations to suggest programmatic solutions that result in the desired output.

5. Automatic software classification. The deep learning engine automatically
identifies and classifies existing and new software abstractions that can be
visualized in the IDE for reuse based on the purpose or behaviour defined by the
end user.

6. Continuous integration and deployment assistance. End users are guided through
each life cycle stage, ensuring the code generated has been properly tested,
accurately integrated within the corresponding development branch, and
automatically deployed in the selected cloud service. These capabilities align with
the end-to-end responsibilities associated with the DevOps philosophy.

Impact
We can list four major impacts resulting from this research project:

• IMPACT 1: Contribute to the development of an ecosystem that will respond to the
future digitisation needs of industry and the public sector. SmartCLIDE IDE provides
the baseline for the establishment of an ecosystem of cloud service creators that will
be able to share services and applications that can be automatically deployed in the
cloud.

• IMPACT 2: Assist the development of new cloud-based services and infrastructures in
Europe and foster an industrial capability in the cloud computing sector. The disruptive

1 Article: SmartCLIDE: a new cloud-native IDE
2 Article: Service Discovery in a Nutshell

https://creativecommons.org/licenses/by/4.0/

6

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

technology proposed by SmartCLIDE based on the coding-by-demonstration principle,
will allow users with low technical skills to create and securely deploy data intensive
services of the highest quality.

• IMPACT 3: Create new opportunities to encourage European-based providers, in
particular SMEs, to develop and offer cloud-based services based on the most
advanced technologies. SmartCLIDE proposes the utilization of existing open-source
code to create the baseline upon which the new IDE will be developed, optimizing the
use of technological resources and the need of investments to further develop the
solution, facilitating the access of SMEs to the technology.

• IMPACT 4: Leverage research and innovation projects to support the development and
deployment of innovative cloud-based services and next generation applications, for
the public and private sectors (including standardisation and applications for Big-Data
and other sector-specific applications).

Benefits for the targeted users
OpenSmartCLIDE introduces several benefits for the different stakeholders within the service
creation lifecycle:

It lowers the entry-level to programming activities to non-technical staff

SmartCLIDE allows end-users to easily prototype features (that can be enhanced later on by
developers). It also provides a powerful training tool for novel developers to understand the
underlying mechanisms of data-intensive applications

It increases the reusability of services

SmartCLIDE allows reusing existing and ad-hoc created microservices, data, control
structures, or operations abstractions.

It improves of the transparency, readability, and comprehensibility of software

SmartCLIDE will implement several features that will improve the readability and
comprehensibility of software:

• it implements the coding-by-demonstration principle, which is a way of creating
software that is closer to the way humans think. Rather than adapting the users’
mental scheme to the requirements of a programming language, it’s the user who
instructs a system to reach the desired result making use of abstractions.

• it implements control flow monitoring at run-time (even at low levels of granularity),
which improves the knowledge about how the software works and interacts with
different components and sub-systems.

• it implements a stateful behavior, showing the state of data (and variables) at each
execution step.

It increases quality and security levels

At design time, when the user defines the output of the program, she will make use of
domain-specific languages like Gherkin, which will enable the full automation of acceptance
tests making use of natural language. SmartCLIDE will also make available full abstractions of
other testing frameworks at testing stage, enabling coders to deploy containers with testing
frameworks for testing purposes in seconds.

It increases productivity levels

Improved reusability, higher comprehension of the underlying mechanisms of soft-ware, and
full control over the lifecycle (from specification to deployment) will boost the productivity of
development teams, even in the most complex contexts.

https://creativecommons.org/licenses/by/4.0/

7

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Let's lay the foundation

This first set of articles presents the pillars of our project: Cloud Computing, Deep Learning,
the Integrated Development Environment, Service Discovery and Programming by Example.

Our partners have made a special effort to write for as broad a technical audience as possible,
to provide a look into the state-of-the-art of the project pillars and to understand the
innovations that the SmartCLIDE project plans to implement.

https://creativecommons.org/licenses/by/4.0/

8

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Cloud Computing in a nutshell
by Netcompany-Intrasoft

Cloud computing has become the platform for the new, global digital transformation stage
we have entered to not only for our countries, governments and companies but also for each
one of us. Our phone contacts, photos and messages are stored in cloud data centers. Music
and videos are being delivered through high capacity cloud streaming services. The best route
finding filter on maps with live traffic information is made possible with Artificial Intelligence
cloud services. Tax income declaration is applied through the cloud. Even, registration to
kindergarten schools in Greece is being performed for the first time by using online family
status verification through the public registry, again by leveraging cloud technologies! Cloud
computing is ubiquitous; either we use it deliberately or we do not.

But what is the actual meaning of this “cloudy” term? Is data being transferred to
the sky clouds for some purpose? Probably not!

Cloud Computing is the on-demand delivery of computing services such as servers,
databases, networking structures and software over the internet. This is implemented by
dedicated data centers and server farms whose services are available to many different
customers/users, offering faster innovation, flexible resources, and economies of scale. Cloud
computing services are based on a “pay-as-you-go” model which means that clients are only
charged for the services they use.

Cloud computing centers are divided into three major categories.

• Public clouds are operated by third-party companies such as Microsoft (Azure) or
Amazon (AWS) which are responsible for the stability, maintenance and expansion of
the underlying infrastructure, and provide their service over a public network,
the internet.

• Private cloud is structurally identical to the public cloud, but it is being owned and
used by a single organization while the provided services are restricted to a private
network.

• Hybrid cloud combines private and public clouds connected with technology that
enables data and applications to be interchanged. This interconnection offers higher
flexibility and more deployment options.

Types of Cloud Computing services
Cloud Computing can be provided through different models according to the abstraction level
and the complexity of the underlying services. The three standard models according to NIST
are:

https://creativecommons.org/licenses/by/4.0/

9

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

• Infrastructure as a service (IaaS): The basic category of Cloud Computing. Users rent
servers, networking hardware, storage devices and operating systems and configure
them to provide business value. Users are responsible for system configuration,
operating system updates and vulnerability eliminations.

• Platform as a service (PaaS): Ideal for developers who want to quickly deploy a web
application without having to setup servers, operating systems and networking, as
they are already configured. In other words, PaaS is an environment created on-
demand for developing, delivering and administering web applications.

• Software as a service (SaaS): Here the whole application lifecycle, as well as the
underlying infrastructure, the configuration and administration tasks, are performed
by the cloud provider. Users interact with the application through a web browser or
mobile device.

The Pizza Analogy
All these new terms can be confusing. Even experienced software engineers found the
concept delineation difficult. For this purpose, the famous Pizza Analogy has been created.
In the first column, there is the equivalent to the non-cloud traditional application
deployment process. All tasks are being handled by the user. While on the other hand, the
last column represents the equivalent to the SaaS approach where every single task is being
“outsourced” to the Cloud Service Provider leaving the user only with the pizza delight!

Figure 1: Pizza Analogy

Latest advances
Cloud-Native

Inevitably, the transition to Cloud Computing was not spontaneous. Cloud services were
initially used mainly as an infrastructure (IaaS), that is online, on-demand Virtual Machines
which hosted operating systems configured by the end-user. As cloud services were
developing, it became obvious that the effective leverage of cloud advantages could be made
possible only by applications tailor-made for the cloud environment, or as they became
known, Cloud Native. Applications of this type are especially designed and developed for
cloud deployment. They are built on microservices architectures, leverage scaling features,
and benefit from continuous delivery to achieve reliability and rapid response to the
requirements imposed by business changes.

Multi-cloud

Multicloud is the employment of cloud services from different service providers in a single
heterogeneous architecture to meet different technical or business requirements. Usually, it

https://creativecommons.org/licenses/by/4.0/

10

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

is implemented by distributing cloud-native applications to several cloud-hosting
environments. The main reasons that favor multi-cloud deployments include reducing
reliance on a single vendor, increasing flexibility and adhering to local data protection policies.

Benefits and Pitfalls
The advantages of Cloud Computing can be easily identified. A third-party company that
specializes in server hosting and deployment can achieve economies of scale and provide
safer infrastructure that is already updated with the latest vulnerability updates. It also
guarantees a reliable platform with zero downtime and the most important, offers global-
scale availability. This enables a small startup somewhere in the world to deploy a new
innovative web application with global availability by paying only for the computing power,
traffic and services it uses. Only consider the costs of these requirements for a self-hosted
infrastructure alternative!

However, as every powerful weapon, Cloud Computing requires careful configuration from
highly experienced users. The “pay-as-you-go” model can lead to unexpected operating
expenses if administrators are not familiar with cloud-pricing models. Furthermore, the
offered services are limited by the decisions of the cloud provider which results in limited
platform customization options.

Data security is another critical area that poses serious concerns about Cloud Computing,
especially the public cloud. Cloud providers have access to user data that can accidentally or
deliberately be modified or leaked to external parties. Data ownership is still a vague field
within the Terms of Service Agreements for Cloud Computing that raise questions about the
accountability on the misuse of possible data events. Due to these concerns, cloud computing
is still not the first option for governments, military and security-critical applications.

Top Cloud Providers according to revenue
1. Amazon Web Services

2. Microsoft Azure

3. Google Cloud

4. Alibaba Cloud

5. IBM Cloud

6. VMWare Cloud

7. Hewlett Packard Enterprise

8. Cisco Systems

9. Salesforce

10. Oracle Cloud

Bibliography
Barron, Albert. “Pizza as a Service.” Accessed May 31, 2020.

https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/

“Cloud Computing.” In Wikipedia, May 30, 2020.
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=959841571

“Cloud Computing @ Microsoft Azure.” Accessed May 31, 2020.
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/

“Cloud-Native Applications | Microsoft Azure.” Accessed May 31, 2020.
https://azure.microsoft.com/en-us/overview/cloudnative/

Drake, Nate, Brian Turner December 20, and 2019. “Best Cloud Computing Services of 2020: For
Digital Transformation.” TechRadar. Accessed May 31, 2020.
https://www.techradar.com/best/best-cloud-computing-services

McLellan, Charles. “Multicloud: Everything You Need to Know about the Biggest Trend in Cloud
Computing.” ZDNet. Accessed May 31, 2020. https://www.zdnet.com/article/multicloud-
everything-you-need-to-know-about-the-biggest-trend-in-cloud-computing

Mell, Peter, and Tim Grance. “The NIST Definition of Cloud Computing.” National Institute of
Standards and Technology, September 28, 2011. https://doi.org/10.6028/NIST.SP.800-145

“Multicloud.” In Wikipedia, February 15, 2020.
https://en.wikipedia.org/w/index.php?title=Multicloud&oldid=940901545.Cisco

“What Is Cloud Computing? – Cloud Computing Definition.” Accessed May 31, 2020.
https://www.cisco.com/c/en/us/solutions/cloud/what-is-cloud-computing.html

https://creativecommons.org/licenses/by/4.0/
https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=959841571
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/cloudnative/
https://www.techradar.com/best/best-cloud-computing-services
https://www.zdnet.com/article/multicloud-everything-you-need-to-know-about-the-biggest-trend-in-cloud-computing
https://www.zdnet.com/article/multicloud-everything-you-need-to-know-about-the-biggest-trend-in-cloud-computing
https://doi.org/10.6028/NIST.SP.800-145
https://en.wikipedia.org/w/index.php?title=Multicloud&oldid=940901545.Cisco
https://www.cisco.com/c/en/us/solutions/cloud/what-is-cloud-computing.html

11

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Machine Learning and Deep Learning:
A power couple

By AIR Institute

Buzzwords like Machine Learning and Deep Learning have been around for quite some
time. We’ve always known that intelligent systems had been a promising technology that
would enable us to search through vast amounts of information quickly and effectively,
facilitating the discovery and application of knowledge. Over the last decades, technology has
successfully taken the reins of numerous tasks that require different degrees of intelligence.
In fact, many of the services offered by today’s biggest companies are based on Artificial
Intelligence, such as Apple’s Siri or Amazon and Netflix’s recommendation engines.

However, it’s important that we learn to distinguish between the two
technologies; Deep Learning (DL) and Machine Learning (ML) are two different

concepts.

Machine Learning is a branch of computing; it is a very extensive subfield that aims to provide
computers with “intelligence”. It strives to develop the machine’s ability to learn so that it
can find the correct solution to a problem without any further explicit programming. Thus, in
Machine Learning, systems learn to solve puzzles by themselves.

Researchers in the field of Machine Learning are concerned with developing mathematical
approaches and determining the parameters that can be used to solve different problems. At
present, we can choose from a range of Machine Learning algorithms, such as classification,
regression, dimensionality reduction or clustering. Our choice will of course depend on the
type of problem being dealt with. In short:

• Classification algorithms assign categories to unseen samples

• Regression algorithms predict numeric values from samples

• Dimensionality reduction algorithms search for alternative mathematical
representations of the data

• Clustering algorithms group samples depending on their similarity

Both Machine Learning and Deep Learning have experienced some ups and downs along
the way. At times, ML was ahead of DL in terms of interest and at others, DL was ahead of
ML. It all depended on the computing performance and their ability to match expectations at
a given point in time.

https://creativecommons.org/licenses/by/4.0/

12

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Modeling algorithms
In ML, the term “intelligence” refers to a specific type of intelligence. Unlike an all-purpose,
general AI, ML intelligence enables a system to provide a degree of assistance to the user; a
helping hand that supplements the human skills or wisdom with knowledge automatically
extracted from datasets via mathematical and computational techniques. This implies
knowledge is obtained not through programming, but through “training”.

To this end, a model is built so that the system can make predictions on the basis of an input
dataset, being the mathematics behind the model that drives the entire learning process. This
learning process usually involves adjusting weights -called parameters- during the training
phase to ensure that predictions are valid in terms of accuracy, mean error, or inertia,
depending on the nature of the data and algorithm. A fine-tune with statistical quality
enhancement purposes is performed by finding values in a non-automatic way for the so-
called hyperparameters. These numbers have to be specified by the user in a predefined grid.

Models are then successively and iteratively defined, trained, evaluated and tested with
different portions of the data to make parameter adjustments. Overfitting is to be avoided
here: a phenomenon by which a model would stick too much to the training data, returning
biased predictions, making it less general and thus less useful. Likewise, the information
contained in the dataset will have to be pre-processed to ensure the desired degree of
accuracy and interpretability. If learning is supervised, the algorithm will compare the results
with tagged data (this process requires manual tagging of all the data, which is costly,
cumbersome and virtually impossible in Big Data terms), helping to determine if the model
was right or wrong for every sample. On the contrary, if no tagging data is available, we’ll stick
to different unsupervised learning algorithms like those for clustering, feature extraction and
dimensionality reduction to extract information from our datasets.

Neural networks can roughly be considered a subset of these Machine Learning techniques.
They are particularly useful when it comes to problems related to unsupervised datasets or
Big Data, making it possible to automatically extract valuable information from patterns.

Approaching Neural Networks: Deep Learning
Deep Learning itself extends Machine Learning, focusing on Big Data and GPU processing -not
necessary but convenient. Neither of them is a one-size-fits-all tool for all problems.

Software neurons are simple processing units which simulate -to some extent- the work of
their biological counterpart. A neuron has some weighted inputs and an output, to which an
activation function is applied. They are grouped in layers, linking one’s outputs with the
following inputs –there are different variants of this structure. A layer can contain an
undetermined number of neurons.

Neural networks are composed of a number of combinations of layers, each one performing
different simple operations which make up a complex “reasoning” process when combined.
These layers fall into three categories: input, output, and hidden (the ones in between).
Optimization functions are applied to infer the adequate weights for each neuron; hence the
computation-demanding nature of these processes.

Taking the widely used example of a handwritten number or an image classification problem,
each of the layers would be responsible for identifying details as a border, a particular shape
pattern, or performing any of the former with a specific degree of accuracy. To put things in
perspective, this can also be done by Machine Learning algorithms, such as Support Vectorial
Machine(SVM), by a different implementation approach.

The Deep Learning concept refers to training Neural Networks with more than two
hidden layers, independently of how deep the Neural Network is.

https://creativecommons.org/licenses/by/4.0/

13

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

A vast variety of Neural Network configurations is available nowadays, but these are the most
popular ones:

Perceptron

Figure 2: Perceptron

This is the simplest model, in which neurons apply the activation function over the weighted
inputs and turn it directly into an output. A multi-layer (one hidden layer + input layer + output
layer) perceptron-composed version called Vanilla Neural Network enhances this behavior by
adding a layer of heavily interconnected neurons. This is made possible by a backpropagation
algorithm, which allows to calculate the loss of a neural network or, in other words, a function
that has to be minimized to enhance the quality of the predictions.

Convolutional Neural Networks

These Neural Networks take an image as an input and return another as an output. A common
example is object identification in images. They decompose the problem into simpler ones by
applying filters to the original channel-decomposed(RGB) information. Recent applications in
the field of malicious code identification have had impressive results.

Recurrent Neural Networks

These ones are focused on the identification of patterns in sequences of data. Some of them
are given a small amount of “memory”, being neurons capable of remembering prior states
through a “thinking” process (Long/Short Term Memory LSTM). The most popular application
of this type of Neural Network is Natural Language Processing.

Several other groups are to be mentioned, such as Recursive Neural Networks -image
treatment and NLP- or Unsupervised Pretrained Networks -data generation and unsupervised
learning-.

A range of tools can be used to develop Neural Networks. Luckily enough, some are at a quite
high level of abstraction, such as the widespread Keras or PyTorch. Other, lower-level tools
include Google’s popular Tensorflow which offers Graphics Processing Unit capabilities.

https://creativecommons.org/licenses/by/4.0/

14

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How can Deep Learning and Machine Learning
help SmartCLIDE

Figure 3: Deep Learning Engine and Services

Developing software can be frustrating and messy; the boilerplate code is repetitive and it
may be difficult to reuse previously generated items, especially in large company
environments. Nevertheless, services are a useful programming paradigm which enhances
scalability and resource control, facilitating the maintenance (zero-downtime updates in
continuous integration environments) processes carried out by small independent teams on
the basis of their atomic functionality. Hence, SmartCLIDE proposes an assistant who will:

• Help users develop services based on BPMN (Business Process Model and Notation)
schemes

• Help developers create quality code through suggestions, syntax highlighting and
providing easy documentation

• Help users/developers reuse already existing services

Apart from this, a non-technical user should be capable to define a functionality and be
guided through the software composition process, enabling the use of existing and previously
classified services.

SmartCLIDE will research Machine and Deep Learning techniques, testing their
advantages over simpler approaches, when faced with challenges in quality

assessment, service composition, service classification and service discovery, along
with code suggestions.

In sum, a Deep Learning Engine will be designed to support ML and DL techniques at the core
of SmartCLIDE. This is a big challenge in terms of project aims and the number of techniques
to be tested.

https://creativecommons.org/licenses/by/4.0/

15

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE: a new cloud-native IDE
By ATB Bremen

Analyzing data is much easier and faster today thanks to cloud computing and on-demand
availability of computer system resources such as data storage and computing power.
However, the development of cloud solutions requires tools adapted to special characteristics
of the cloud and fast time-to-markets demanded by companies and organizations. Cloud
distributed systems are highly complex due to the wide variety of technologies and
frameworks that can be used in the whole stack, the underlying microservice architectures,
or the management of the deployment pipeline. To develop services from scratch is
expensive, as well as time-consuming, and one of the main challenges IT companies are facing
is reflected in the difficulty to find qualified IT staff in the market to face these challenges.

Makes the development and deployment of data-intensive services for the cloud
easier than before.

In this context, the SmartCLIDE consortium proposes the creation of a new cloud-native
Integrated Development Environment (IDE) that makes the development and deployment of
data-intensive services for the cloud easier than before, aiming at bridging the gap between
on-demand business strategies and the lack of qualified software professionals.

Which will be the main features of our IDE?

• Lifecycle support. A software follows a life-cycle, from the specification of features to
the deployment of the solution. Each stage requires specific tools and SmartCLIDE will
provide these tools to software-crafters just when they need them. For example, it will
offer Gherkin tools based on the specification of the behavior of the services to
develop and defining the acceptance criteria, enabling future automation of
acceptance tests. At the development stage, SmartCLIDE will provide data
sources, data transformations, graphics visualization artifacts, or general-purpose
abstractions and patterns that can be combined to implement the above-mentioned
features. And at a final stage, it can discover specific purpose containers for the
deployment of the generated code.

• Insightful source code monitoring. SmartCLIDE IDE will implement visualization
features that enable the developer to gain a deeper knowledge about the source
code. It will dynamically show the meaning of expressions, or the flow of code at low
levels of granularity. It will allow to compare different software states that are
achieved, perform changes in states that are reflected dynamically, or to create new
abstractions that can be easily reused.

• Version Control and Configuration Management Integration. SmartCLIDE will enable
integration with the most frequently used Version Control and Configuration

https://creativecommons.org/licenses/by/4.0/

16

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Management Systems such as GitHub or GitLab. Following a DevOps and full-stack
development approach, a unique repository shall be used to keep all the
implementation items under version control: source code, binary files, configuration
files, data, tests, virtual machines, containers, etc.

These are already cool features, but we propose on top some very nice features based on the
power of Deep Learning that make SmartCLIDE very special:

• Development by demonstration and text notation. Making use of a Deep Learning
Engine, and based on the current features, SmartCLIDE will automatically retrieve
resources that it considers relevant for the new development. The end-user will be
able to use text notation to enhance the description of the retrieved behavior or
algorithm. Based on these new indications, the Deep Learning Engine will
dynamically propose programmatic solutions to obtain the desired output. The
environment will also enable developers to face programming tasks by manipulating
abstractions straight forward, not requiring previous knowledge of the underlying
language.

• Automatic software classification. Our Deep Learning Engine will automatically
identify and classify already existing and new software abstractions that will be
visualized in the IDE for re-utilization, based on the purpose or behavior defined by the
end-user.

• Continuous integration and deployment assistance. SmartCLIDE will guide the user
through each stage of the lifecycle, ensuring that the generated code has been
properly tested, accurately integrated within the corresponding development branch,
and automatically deployed in the selected cloud service, implementing the end-to-
end responsibility of the DevOps philosophy.

SmartCLIDE will be based on Eclipse THEIA, the cloud version of the Eclipse IDE, offering all
the necessary tools for developing in one single place. It will be a rich interface, with a vast
range of features to accelerate the deployment of cloud services, improve their quality, and
expand the skills of novel and experienced developers.

https://creativecommons.org/licenses/by/4.0/

17

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Discovery in a Nutshell
By University of Macedonia

In recent years, Microservices have gained in popularity, since they come with various
advantages, which are very useful for contemporary software development for example, in
the era of containers, decentralization and cloud computing.

Microservices can be developed and deployed on different platforms, using
different programming languages and development tools.

Additionally, the microservices architecture is an approach in which an application is broken
down into a number of components, in which each component is responsible for a specific
role. Different components communicate with each other using network protocols (e.g.,
HTTP) through connectors (e.g., APIs). A cloud platform is able to provide such services to the
user. The term “cloud services“, as described in other blog posts, refers to a wide range of
services delivered on-demand to companies and/or customers over the internet. These
services are designed to provide easy, affordable access to applications and resources,
without the need for internal infrastructure or hardware. Ranging from checking emails to
collaborative document writing, most employees use cloud services throughout their
workday, whether they’re aware of it or not. As a result, microservices are widespread and
used by many expert or novice end-users.

In addition to that, microservices offer many functionalities that can be easily deployed or
modified saving time and effort.

Nevertheless, the large variety and the number of available services make it
difficult for a novice cloud developer to find and choose the right services for

his/her application.

Luckily, all cloud providers as well as the research community have experimented with
Service Discovery. Service Discovery refers to the process by which, on the one hand, an
application-user learns (by search) what services are available on the network, and on the
other hand, the network “learns” what services the application can provide.

https://creativecommons.org/licenses/by/4.0/

18

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How does Service Discovery Work?
There are three components to Service Discovery: the service registry, the service
provider and the service consumer.

The Service Registry. The service registry is a key part of service discovery. A service
registry needs to be highly available and up-to-date. Service instances must be registered with
and deregistered from the service registry. The identification of services can rely on advanced
search methods, and a search in public or private repositories, or on the internet. In a cloud
platform, every service has many instances, and each instance is being used by an application
or a user. In terms of adding a new service to the system, it is common to use the
Self-Registration Pattern in which the Service Provider adds a new service with its information
on the system. The alternative to self-registration pattern is the existence of a system
component to manage the registration of service instances: namely, the third-party
registration pattern. Both solutions are presented below:

The Self-Registration Pattern. In the self-registration pattern, a service instance is
responsible for registering and deregistering itself with the service registry. Also, if required,
a service instance sends heartbeat requests to prevent its registration from expiring.

Figure 4: The Self‑Registration Pattern

The Third-Party Registration Pattern. Third-party registration allows delegation of service
registration/deregistration task to Third-party registrar (service manager) component. On
service instance start-up, service manager is responsible for registering the service with the
Service Registry. Similarly, it de-registers on service shutdown. With this option, service
resilience can be better handled as Service Manager can handle these requests more
elegantly than self-registration where a service can abruptly go down with Service Registry
not being aware. The following diagram shows the structure of this pattern.

Figure 5: The Third‑Party Registration Pattern

Service Discovery. Regardless of the Service Registry decision, there is a need for a predefined
protocol (i.e., a specific way to describe the service) to enable discovery. A service description
captures the functional and non-functional characteristics of a service in a format that can be

https://creativecommons.org/licenses/by/4.0/

19

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

machine-read and processed. This description helps the Service Discovery to find services
based on search criteria. A service description can be an XML file as shown below.

Figure 6: A Service Description

The service discovery is a search process that aims at finding available services with specific
requirements or finding instances of a service by performing queries on the service registry.
There are two primary strategies for discovering services, via a service registry:

Client Side Discovery. The client contacts a service registry, receives details for available
services, and contacts one of them using a load balancing algorithm. When the client requires
a microservice, it finds a suitable service in the registry and connects to it directly. The
assumption is that the registry tracks availability of services using a heartbeat mechanism.

Figure 7: Client-Side Discovery

Server Side Discovery. The client contacts a load balancer, making a request that indicates
which type of service it needs. The load balancer consults the service registry, selects the
optimal service and routes the request to it. Load balancing is commonly used as a service
discovery mechanism; it provides health checks and can automatically register/unregister
services when they fail. The load balancer works in tandem with the service registry.

https://creativecommons.org/licenses/by/4.0/

20

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 8: Server-Side Discovery

Service Consumer. Finally, these applications are being used by some entity called Service
Consumer. The service consumer could be an application, a service, or any other type of
software module that requires a specific functionality, through a service. This entity uses the
Service Discovery to find services within the system, binding to the service over a transport
protocol and then executing the service function. The service consumer executes the service
by sending a request formatted according to the service description. The most common
example of a service consumer is a REST Web Service call like this one:

api.mycompany.io/v1/party/findById/12

This request invokes a service of the revision v1 that exists in the api.mycompany.io host.
Specifically, it will try to find a party entity with id=12.

Examples of Service Discovery in Industry
1. Google API Discovery Service: The Discovery API provides a list of Google APIs

and a machine-readable “Discovery Document” for each API.

2. Amazon ECS Service Discovery (AWS Cloud Map API): AWS Cloud Map is a fully
managed service that can be used to create and maintain a map of the backend
services and resources.

3. IBM Service Discovery API: Service Discovery is a core service within a cloud
microservices architecture that can be used to accelerate the development of
applications in the cloud environment.

4. Docker: Service discovery registers a service and publishes its connectivity
information so that other services are aware of how to connect to the service.
Some ways to achieve service discovery with docker are:

a. Service Discovery with DNS

b. Internal Load Balancing

c. External Load Balancing (Swarm Mode Routing Mesh)

d. The Swarm Layer 7 Routing (Interlock Proxy)

5. Azure API Management with microservices: As a full-lifecycle API management
solution, it provides additional capabilities including a self-service developer
portal for API discovery, API lifecycle management, and API analytics.

https://creativecommons.org/licenses/by/4.0/

21

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

References
www.g2.com/categories/service-discovery

www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

ns1.com/dns-service-discovery

www.datawire.io/guide/traffic/service-discovery-microservices/

avinetworks.com/glossary/service-discovery/

medium.com/@jamesemyn/service-discovery-in-microsrvice-cbd54afb94f3

auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

www.magalix.com/blog/kubernetes-patterns-the-service-discovery-pattern

cloud.google.com/service-infrastructure/docs/service-consumer-management/reference

docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html

developers.google.com/discovery

developer.ibm.com/api/view/id-129:title-IBM_Service_Discovery_API#Overview

success.docker.com/article/ucp-service-discovery-swarm

docs.microsoft.com/en-us/azure/api-management/api-management-kubernetes

https://creativecommons.org/licenses/by/4.0/

22

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Programming By Example
By AIR Institute & KAIROS DS

The aim of Programming By Example (PBE) is to develop programs through the synthesis of a
series of examples. First, a sequence of actions is performed or given by the user: this is the
starting point of a combination of functions which result in a programmatic output,
designated for a specific task.

With this technique, users are able to create programs by interacting with the interfaces they
are used to, implementing generalizations to problem-solving techniques which are
independent from the data they were generated with.

A more technical definition states that PBE is a synthesis technique by which
programs are iteratively and automatically generated, from tuples of inputs and

outputs called examples

In case the generated program does not operate correctly, a new tuple has to be introduced
to adjust the programmatic output. Thus, users provide input/output combinations
(examples) of the task they want to perform, and the computer infers a program that is
capable of addressing the problem.

Although PBE is targeted at non-expert users and its purpose is to lighten the workload
associated with programming, it nevertheless has added value to advanced users because it
mitigates tedious and repetitive tasks, optimizing their work. Moreover, the generated code
can be reviewed by a human –the output is legible and easy to understand depending on the
developer-, given that a large part of the program is normally correct, only some parts are too
oriented to the examples it was trained with. This characteristic means a program does not
have to simply be taken or discarded as ML black-box models do. Thus, in PBE, a program can
be modified if the number of examples is not sufficient.

Nonetheless, this methodology suffers from a series of limitations. For example, the
generalization is not broad enough to deal with all the plausible data types, and the program
is not able to cope with variations to its output.

The definition of a generic Domain-Specific Language (DSL) is key to a PBE. DSL is a grammar
of production rules whose aim is to narrow down the search space; it represents the limits of
a PBE system. If a program can be described in terms of a DSL, then a solution may be found.
Otherwise, it is impossible, no matter how many examples are provided.

https://creativecommons.org/licenses/by/4.0/

23

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

PBE is also known as inductive synthesis: a synthesis process that is based on examples. A
deductive synthesis, in turn, is based on logical specifications defined by the user. PBE breaks
a common programming rule, in that PBE users are not simply consumers because they can,
to some degree, build their own code. This means small scripts are automatically generated
for little everyday tasks. For advanced users, PBE can be a helping hand too. It’s especially
useful for data scientists who must normally manage big amounts of data before they can
apply AI algorithms. Normally, data is obtained from diverse sources which have different
degrees of structuring. While they provide users with a high level of flexibility, they make it
hard to exploit, combine, and query data. Unfortunately, a major problem associated with
inductive synthesis is the ambiguity which results from defining the behaviour of the program
and not its exact requirements.

PBE Application and generated output
The main application fields of PBE are robotics, code refactoring, data parsing or query
building, and prominently, the so-called data wrangling.

Data wrangling consists in pre-processing the data that is to be fed to other tasks. The process
can be divided into three parts: extraction, transformation and formatting. Extraction consists
in the generation of structured data from semi-structured sources, such as web pages or JSON
files, where a program is built for every field extraction. Transformation addresses type
casting and combining fields, e.g. the composition of names from several related fields.
Finally, formatting means that a specific format is applied in a repetitive way or a structured
output is created from the previously generated data.

Code refactoring allows users to save time on common maintenance tasks, enhancing users’
time management and performance.

Regarding the code generated by PBE tools, code generation is a complex process whose
results are not always satisfying: while in an ordinary sense traditional program synthesis
consists in creating scripts which satisfy a series of logical conditions, in PBE, scripts are
synthesised from a number of input/output states. This model is successful because it allows
users to define the desired behaviour, and then, tune-up the result manually. On the other
hand, it is difficult to generate code that is consistent with all the examples provided by the
user.

The absence of a sufficient number of examples is a common problem during program
composition. It is tackled by applying techniques such as Machine Learning (ML), which make
it possible to rank intermediate functions, or to extract feedback on the generated programs.

In addition, more complex programs can be created. These programs use sequential
predefined functions to perform specific tasks. This is done in AI approaches whose aim is to
enhance the results of a PBE process, obtaining programs which solve high-level functions
from some simpler, atomic ones.

https://creativecommons.org/licenses/by/4.0/

24

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

ML vs PBE
The relationship between ML and PBE is complementary, although, in some cases, they may
be used separately to deal with similar problems. While both use example data to produce
specific-purpose code, the main difference lies in PBE’s suitability for small repetitive tasks:

• PBE programs may be edited and adapted after they have been generated, to ensure
they are fit for their final purpose. This can be done to optimize and adjust their
functioning. On the contrary, ML models may only be applied to data.

• PBE requires a lesser amount of data (examples) to infer a generalization, and in this
manner generate a proper output.

• ML can be used to enhance the PBE process of program generation, making the search
for an ideal function faster. Also, PBE makes it easier to tackle tasks that must be
performed prior to the application of AI algorithms. Note that ML has to be used to
deal with complex data tasks.

• Some researchers have made efforts to apply Neural Networks to PBE code
generation, by means of the aforementioned process of using sequences of atomic
particular-purpose functions to achieve a complex result.

Programming By Example in SmartCLIDE
The inclusion of the PBE paradigm in SmartCLIDE could help create generalizations which
would spare the user certain development tasks during the creation of services, and provide
help and support with the tasks associated with the Deep Learning Engine (DLE), such as data
pre-processing.

The combination of PBE with some other concepts like Context will be fundamental for the
simplification of the development process for non-technical users. This will also help make
service generation easier for developers. PBE represents too an interesting feature to test its
matching possibilities with AI usage.

To sum up, PBE has to be tested as a helper in coding and data processing. The
SmartCLIDE interface could offer the benefits of PBE, reducing the workload

associated with complex syntaxes and repetitive tasks.

https://creativecommons.org/licenses/by/4.0/

25

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Our scenarios of use

This second section presents scenarios where SmartCLIDE will be validated and evaluated
under real conditions. There are 4 such scenarios:

• Wellness Telecom proposes a real-time communication project that involves the
deployment of multiple virtual machines, providing a compelling use-case for
SmartCLIDE at the creation of run-time abstractions like real-time constraints of
the communication process and the validation of the deployment in software-
defined infrastructures.

• Unparallel proposes two different scenarios for SmartCLIDE piloting its
evaluation in the evolutive development and interfacing of an IoT web catalog
with SmartCLIDE, enabling the end-users of the portal (mostly IoT developers or
integrators) to develop IoT solutions with SmartCLIDE.

• CONTACT Software proposes to evaluate SmartCLIDE as part of its ELEMENTs
integration platform, enabling potential customers to build their own IoT-related
services.

• Netcompany-Intrasoft will make use of SmartCLIDE at all the stages of the
lifecycle within an existing software project.

If you would like to know more about our project, we invite you to visit the SmartCLIDE.eu
website and subscribe to our newsletter to receive regular updates on our progress.

https://creativecommons.org/licenses/by/4.0/

26

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

About LoRaWAN communication services
By Wellness Telecom

LoRa is a radio modulation technique that is essentially a way of manipulating radio waves to
encode information using a chirped (chirp spread spectrum technology), multi-symbol
format. LoRa as a term can also refer to the systems that support this modulation technique
or the communication network that IoT applications use.

The main advantages of LoRa are its long-range capability and its affordability. A typical use
case for LoRa is in smart cities, where low-powered and inexpensive internet of things devices
(typically sensors or monitors) spread across a large area send small packets of data
sporadically to a central administrator.

A low-power wide-area network (LPWAN) is a type of wireless telecommunication network
that allows connected devices to have long-range communications capabilities at a low bit
rate. LPWANs are typically used in asset monitoring and management in smart cities and
Industrial Internet of Things deployments. This is in contrast to wireless wide-area networks
(typically used by large corporate organizations) that carry more data and use more power.
Examples of LPWAN technology are Lora/LoraWAN, Sigfox, MIoTy, Wi-SUN, LTE-M, and NB-
IOT.

Figure 9: A low-power wide-area network (LPWAN)

The concept
Wellness TechGroup proposes a microservices-based LoRaWAN communications platform to
face all these difficulties. When compared to old monolithic applications, microservices can
provide: (a) replication of microservices (i.e., to improve availability, adaptability and
scalability), and (b) an inherent security layer thanks to container and virtual machine (VM)
native isolations.

https://creativecommons.org/licenses/by/4.0/

27

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 10: Monolithic vs Microservice architecture

Despite its usefulness, the microservice architecture presents a series of difficulties for the
developer given the large granularity of its elements. For example, in the chosen real-time
communication use case, the final system must include, at least, the following functionalities
(as separated microservices):

• ChirpStack Network Server is responsible for handling (and de-duplication) of uplink
data received by the gateway(s) and the scheduling of downlink data transmissions.

• ChirpStack Application Server is responsible for the node “inventory” part of a
LoRaWAN infrastructure, handling of received application payloads and the downlink
application payload queue

• ChirpStack Gateway Bridge is a service which converts LoRa® Packet Forwarder
protocols into a ChirpStack common data-format (JSON and Protobuf).

• Mixer and/or transcoder: supplies transcoding and mixing video tools.

• Database (e.g., MySQL, Redis…): supplies storage capabilities (e.g., registered users,
calls in progress).

Docker container Kubernetes-based deployment
Containerization involves the packaging of code and its dependencies together. To better
understand containerization with Docker and Kubernetes, this guide provides an example of
developing a simple application, containerizing, and deploying it to a Kubernetes cluster.

Figure 11: Deploying an application to a Kubernetes cluster

Consequently, the whole LoraWan communication platform system can be illustrated as:

https://creativecommons.org/licenses/by/4.0/

28

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 12: : Real-time communication platform system

SmartCLIDE benefits
Developing, deploying, and monitoring complex systems such as the Chirpstack LoRaWAN
platform we previously described using containers is a tough task, but thanks to SmartCLIDE,
developers will be able not only to deploy it, but also to get:

• A better comprehension of real-time deployment costs and time

• A deeper insight into deployment costs, by providing monitoring tools that will allow
the developer to track the cost of a deployment for major cloud providers.

• Easier management of deployed services.

• Smoother service delivery through reduced number of errors and reduction in time to
resolution

• Improved understanding of lifecycle costs

• Overall increase in agility and efficiency of initial deployments

In conclusion, SmartCLIDE will aid the developer throughout every phase, such as
development, testing, and deployment. Then, once deployed, the IDE (Integrated
Development Environment) will supply visual monitoring tools to manage and extend running
capabilities, also providing a detailed analysis about deployment and deployment costs.

In conclusion, SmartCLIDE will aid the developer throughout every phase, such as
development, testing, and deployment.

https://creativecommons.org/licenses/by/4.0/

29

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Enhance IoT-Catalogue
with an integrated Cloud IDE

By Unparallel

IoT-Catalogue (iot-catalogue.com) is the one-stop-source for Internet-of-Things innovations
and technologies to help users (developers/integrators/advisors/end-users) take advantage
of IoT for the benefit of society, businesses, and individuals. IoT-Catalogue provides a large
range of information about products, including both hardware devices and software
components. It also identifies solutions designed to target specific ICT problems and
describes use cases where solutions were applied.

Figure 13: IoT Catalogue

Business needs
IoT-Catalogue holds and presents a wide range of information that can help IoT developers
design their IoT solutions. Options range from low-level hardware (like boards and sensors)
to platforms and services to store and process data. However, the current IoT-Catalogue lacks
mechanisms to make use of the available information to actively support the developers in
the creation of IoT applications.

In this sense, an integrated IDE that provides abstractions for the tools and
services listed in IoT-Catalogue would enable the development of users’ own IoT

solutions.

https://creativecommons.org/licenses/by/4.0/
https://www.iot-catalogue.com/

30

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE benefits
The integration of SmartCLIDE technologies in IoT-Catalogue will evolve IoT-Catalogue to a
closed-loop IoT development platform that:

• Supports IoT developers on the design and implementation of their IoT solutions;

• Helps developers select the hardware that better suits the intended purpose;

• Supports the development of the IoT solution software that will use the hardware
selected;

• Allows the definition of the complete behavior of the solution, from the data
acquisition on devices to the data storage and processing on platforms in the Cloud.

https://creativecommons.org/licenses/by/4.0/

31

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Provide a Quick Demonstration for a Customer
By CONTACT Software

The SmartCLIDE project has based its use cases on a set of 29 generic use cases, which 5 Pilot
Cases demonstrate and make use of. The Pilot case by CONTACT Software, described here,
involves the scenario where a service provider is working with customers throughout the
lifecycle of a custom solution.

CONTACT Software is a leading provider of solutions for CAD data management, product
data management (PDM), and product lifecycle management (PLM). Founded in 1990,
the objectives of our founder, Karl Heinz Zachries, remain our objectives of today: making
complex product data more accessible and connecting employees across technical and
organizational boundaries.

“Making complex product data more accessible and connecting employees across
technical and organizational boundaries.”

CONTACT is, at its core, a customer-focused company. We act in accordance with market
requirements and, above all, the requirements of our customers. We maintain long-term
partnerships with our customers according to our motto “Continuity and Perspective”. Our
team has expertise in industry and industrial processes, PDM/ PLM technology, and project
implementation.

CONTACT employs about 400 employees with headquarters and product development
in Bremen, Germany. Our substantial R&D commitment ensures that we know what topics
will be relevant tomorrow and develop – often together with our customers – appropriate
solutions early on, for example, at the moment for the wide range of topics relating to
Industry 4.0 / Internet of Things. We provide our customers with comprehensive support in
concept development and implementation, replacing old systems and supplementing existing
installations in the face of additional requirements.

https://creativecommons.org/licenses/by/4.0/

32

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

As an overall provider, we feel responsible for the complete solution. Our customers benefit
from coordinated, one-stop consulting, implementation, and technology. Our customers are
manufacturing companies and development organizations that often operate worldwide and
rank among the leaders in their market segments.

Design principle: modular instead of monolithic

The foundation for our design principle, “modular instead of monolithic”, is provided by the
CONTACT Elements platform. Similar to Lego, CONTACT Elements’ modular design principle
allows comprehensive applications to be created that are more than the sum of their parts:
each outstanding in its own right, together something unique. The same is true of its
consistent ease of use and thus outstanding user experience. Our open standard solutions
support the product lifecycle from the initial idea through to its deployment at customer sites.
Our open standard solutions are CIM Database PLM, Project Office, Collaboration Hub, and
Elements for IoT. We combine data management for virtual products with the functions
required for collaboration and for process and project management in product development.
We offer an extensive library for industrial IoT services, with modules for the digital twinning
of real products.

We live in a world of innovative companies that are working on the products of the future
each and every day and are putting the digital transformation to smarter products into
motion. Our priority is to consider in-depth, listen carefully, and offer advice on an equal
footing with our partners.

Business Needs and Challenges

CONTACT Software is currently in a transition phase in its architecture, from a client/server
installation on-premise to a cloud-based installation, with customers using only web clients,
thus having all of the functionality in a browser. Of course, one of the main focuses is to make
the transition as smooth as possible.

However, the tools for setting up and orchestrating a diverse and complex cloud
architecture are not as developed as some software engineers hoped them to be.

https://creativecommons.org/licenses/by/4.0/

33

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Especially the support of state-of-the-art methodologies in IDEs in use at CONTACT lacks
depth. Thus, a great need in the current phase is to be able to simplify not only the
deployment and management of cloud (micro-)services but in fact their development as well.

As a result of the openness of our products and our goal to collaborate with customers in the
development and improvement of our software, we need tools that support the user and let
him work as efficiently as possible. For example, when customizing a solution to their needs,
we may need tools to support the creation of additional services and deployments. In
addition, all parties in the collaboration are intensely aware of the need to create and use
secure software both cloud-based and on-premise. Therefore, tools that support the secure
development and creation of (cloud) services are of utmost importance.

Working with SmartCLIDE

For us, SmartCLIDE will be a catalyst when working with cloud technologies.

It will be a great help in sales scenarios, when the demand for a quickly deployable, but stable
demonstration of a custom-tailored solution is high (depending on the requirements of the
potential customer) and also in later steps of the collaboration with a customer. With
SmartCLIDE we want to collaboratively work on our solution with each customer and develop
it further in order to make it the best possible fit for the individual end user’s needs. In order
for this to work properly, we will rely on the easy-to-use functionalities of SmartCLIDE and
the low-level programming examples.

SmartCLIDE will allow the user to monitor the quality of written code and deployed services.
We aim to use this functionality not only to increase our code quality and the corresponding
test coverage, but we will also use it as a tool to help monitor performance of deployed
services in a live production environment, both on customer premises and inhouse.
Specifically, SmartCLIDE will help us to detect and avoid possible bottlenecks and breakages.

https://creativecommons.org/licenses/by/4.0/

34

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Optimizing Resources
By Netcompany-Intrasoft

Netcompany-Intrasoft is a multi-national software and IT services company, part of
Netcompany, that employs more than 2800 professionals. Its Product Development
Department has been developing highly customized, complex software products using the
latest technology for over 20 years. These products are used in the banking, law, customs,
social security, and taxation sectors, among others. One of these software products
is PERSEUS©, a highly Configurable & Scalable Software Product, built upon an Open
Architecture Technology, that fully automates the business processes within a Social Security
and Pensions Administration Organization.

Netcompany-Intrasoft leads one of the envisioned SmartCLIDE pilot scenarios that aims to
involve its PERSEUS Software Product Development teams, currently comprising of three agile
teams, who will use the enhanced SmartCLIDE platform to develop new PERSEUS
functionalities, with the utmost goal to evaluate the optimization levels that can be reached
with respect to use of resources and development time, enhancing thus the entire software
development lifecycle processes and improving team collaboration…

The need emerges primarily by, on the one hand, the observation that due to a number of
commonalities in features/functions/processes in the PERSEUS sub-projects managed by
different agile teams, code could be re-used across these product development teams. In
addition, these teams are many times tasked to perform common parallel tasks and even
repeat trivial tasks, thus optimizations in these processes could lead to both time/resources
optimization as well as increased efficiency.

As PERSEUS is a multi-module system and in addition Netcompany – Intrasoft has a wide
range of products available or under development, there is a rich library of potentially
reusable, software components and services developed by diverse agile development teams.
Thus, software re-utilization and optimized team performance and collaboration are key
targets for the company. Thus, in the context of the PERSEUS pilot in SmartCLIDE, the extent
of re-utilization of software, leading to optimized performance and collaboration of the
different agile teams, will be assessed both in the case under which the SmartCLIDE platform
is used and when it is not, in order to evaluate the gains. This assessment will be accomplished
by gathering feedback from the involved developer teams during the pilot and at the same
time measuring the number of code blocks that are re-used in each case.

Another target to be achieved concerns the reduction in time for resolving errors. In the
PERSEUS project, the JIRA issue tracker is used for handling Features and Bugs. The Developer
work is divided into two-weeks sprints and every ticket (issue) has story points estimated by
the development team, before the beginning of a sprint, depending on the complexity and
the time needed to resolve each ticket. At the end of every sprint, a report chart is created
which shows the work that should be completed and the work that was actually completed.
Using this methodology, in which each issue is tracked, the time in resolving issues is

https://creativecommons.org/licenses/by/4.0/
https://perseus.netcompany-intrasoft.com/

35

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

measured. This will be performed both in the case in which the SmartCLIDE platform is used
by the developer teams and when it is not, to assess the gains brought by SmartCLIDE.

In addition, the reduction in time to deploy a significant feature requested by an end
user is important. In PERSEUS, Jenkins is used to deploy its modules in slots. Before each slot,
the desired wars are gathered to deploy in a list and a Jenkins job is initiated. Depending on
how many wars are in this list, the time varies. Thus, the time will be measured to deploy a
significant new feature using feedback from the agile team both in the case in which the
SmartCLIDE platform is used and when it is not.

Furthermore, another target of the pilot is the reduction in lifecycle costs. This will be
measured on feedback collected from the involved agile teams regarding:

• The time needed to specify what is needed to be implemented and how;

• The time spent on development by the development teams and testing by the QA
testers, using the Jira issue tracker;

• The time spent on deployment (e.g. with Jenkins), both in the cases in which the
SmartCLIDE platform is used and when it is not.

Finally, another aim is to detect (and thus resolve) as many security vulnerabilities in the
developed software as possible to increase the security level of the produced software of
PERSEUS (and other products). Thus, another metric to measure is the level of increase in
the number of detected security vulnerabilities. This will be measured using SonarQube
and feedback gathered from the involved agile teams before and after using the SmartCLIDE
platform-related functions.

https://creativecommons.org/licenses/by/4.0/

36

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Deep dive

This section dives into the heart of the matter: the benefits of the SmartCLIDE project. To this
end, it includes 3 articles:

• The first article presents the team's approach to listing the challenges the project
wants to solve and the associated proposed solutions;

• Based on the market requirements, the second article explains the added value of an
architecture based on microservices. This article is divided into 2 parts:

• Part 1: The road to microservices

• Part 2: Quality and security in a microservices world

• The third article looks at a key feature of SmartCLIDE: service creation and how
SmartCLIDE will support it.

• The fourth one explains the SmartCLIDE deep-learning engine

• The last one presents the SmartCLIDE User Interface

https://creativecommons.org/licenses/by/4.0/

37

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Innovative Approaches
By University of Macedonia

This article describes novel approaches for service discovery, and classification. This approach
is detailed in the deliverable D2.1 “SmartCLIDE Innovative Approaches and Features on
Services Discovery, Creation, Composition and Deployment“[1]. It presents the approach
adopted by the project team to define and organize the project tasks.

The approach used by the SmartCLIDE team is the engineering cycles, as described in the
design science framework [2]. According to Wieringa, every engineering problem can be
treated as a 4-step process:

7. identifying the need and specifying the problem;
8. design the proposed solution;
9. evaluate the proposed solution; and
10. apply the solution.

The deliverable D2.1 aims at the first 3 steps of the approach in the sense that the application
of the solution falls into “Assessment of SmartCLIDE at pilot users”. In this article, we focus
on the 1st step identification of problems; whereas the 2nd (proposal) and the 3rd
(evaluation) steps will be presented in the final deliverable D2.1.

The identification of the targeted problems stemmed from the project proposal and the
associated requirements. Each problem has been decomposed into simpler tasks that need
to be fulfilled to solve the problems. The tasks are decomposed into two main categories:

• technological tasks aim to solve problems by reusing or adapting existing solutions.
The advancement that technological tasks is the introduced level of automation, as
well as the composition of existing solutions into processes.

• research tasks aim to solve problems that cannot be treated with existing solutions;
thus, urge for novel algorithms, prototypes, and tools.

The outcomes of these tasks are organized into seven types:

1. reports correspond to documents describing existing tools, repos, approaches,
etc.;

2. datasets correspond to collections of data points that will be stored in a repo;
3. schemas correspond to documents describing the format of data stored in repos,

or exchanged between components;
4. tool corresponds to existing implementations that solve a practical problem;
5. approach corresponds to novel research approaches (method, algorithm, etc.) for

problem solving. They are expected to be linked to a publication;
6. draft prototype corresponds to the proof-of concept implementation of novel

approaches. This version of the implementation is used only for research purposes.
We expect a low level of automation and no integration at this stage;

7. final prototype corresponds to the functionally final version of the research
prototype. This version will be fully automated, no integration.

https://creativecommons.org/licenses/by/4.0/

38

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 14 maps the problems identified and the associated requirements to a list of tasks, so
as to guide the organization of the D2.1 deliverable and the research activities.

Figure 14: SmartCLIDE research problems identification

Upon problem identification, the project team proceeded to the assignment of
responsibilities for answering each problem (see Table 1).

Table 1: Micro-planning per task and relevant problems

Problem Solution

How can services be
identified?

Research approach on getting services from classic registries
Research approach on getting services from web pages
Research approach on getting services from code repositories

How can services be
classified?

Research approach on available datasets
Research approach on classification model implementation

How can services be
registered?

Research approach on registry service query
Research approach for interfacing service registry

How can services be
created?

Technological Approach on the Integration of Version Control in SmartCLIDE
Technological Approach for service creation in SmartCLIDE

How can services be
specified?

Technological Approach on Functional Service Specification
Technological Approach on the Specification of Service Runtime Monitoring
& Verification

How can code be
generated?

Research Approach on Source Code Generation
Research Approach on Autocomplete Suggestions

Can patterns lead to
code templates?

Research Approach on Design Patterns Default Implementations
Research Approach on Architectural Patterns Default Implementations
Research Approach on Security Patterns Implementations

How can services be
composed into
workflows?

Technological Approach on Service Composition Representation Using BPML
Technological Approach on Service Composition (either Discovered or
Created) Technological Approach for Mapping Services to Containers

How can service
composition be
assisted by AI?

Research Approach on Autocomplete Suggestions on Service Composition
Research Approach on Workflow Context Identification

How can services and
workflows be tested?

Technological Approach for Coverage of Created Services
Technological Approach for Unit and Acceptance Testing
Research Approach for Automated Test Case Generation (Virtual User for
Testing)

https://creativecommons.org/licenses/by/4.0/

39

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

How can security,
maintainability, and
reusability be
assessed?

Research Approach for Security Assessment at Service Level
Research Approach for Security Assessment at Workflow Level
Research Approach for Maintainability Assessment at Service Level
Research Approach for Maintainability Assessment at Workflow Level
Research Approach for Reusability Assessment at Service Level
Research Approach for Reusability Assessment at Workflow Level

How can services and
workflows be
deployed

Technological Approach on Deployment and Orchestration Tools
Technological Approach on Management Tools
Research Approach on Continuous Delivery

How can
conformance to
requirements be
assessed?

Research Approach on Cost Analysis
Research Approach on Scalability Assessment

How can services and
workflows be
monitored?

Technological Approach on Runtime Monitoring and Verification of Services
Research Approach on Defining Sensors/Metrics for Security Monitoring
Technological Approach on System Monitoring (Performance and QoS)

The deliverable D2.1 details each problem and how it is planned to be solved.

References
[1] The link to the deliverable D2.1 will be available as soon it will be accepted by the project

reviewers

[2] R. J. Wieringa, “Design science methodology for information systems and software
engineering”, Springer, 2014.

https://creativecommons.org/licenses/by/4.0/

40

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Market Requirements
By University of Macedonia

The road towards microservices
The SmartCLIDE consortium pursues the design and development of a Cloud IDE that offers
full support to the services creation life cycle: from specification of user stories to deployment
in the cloud. Having performed a retrospective look to software development approaches,
the consortium aims to employ a low-code software development paradigm for creating
reusable and easily deployable microservices that can be indexed and composed in more
complex business processes, in an online development platform that will be comprehensible
for business stakeholders with limited technical skills. Artificial Intelligence methods will
further assist the proposed Development Environment by providing smart auto-complete and
service discovery features.

Before digging into the details of the solution, let’s explore the history of software
development to better understand the rationale and the problems that SmartCLIDE solves.
Since the waterfall model was described in the early ’70s, introducing a set of consecutive or
linear steps for developing software (system and software requirements, analysis, design,
coding, testing, and operations), several development paradigms have been described over
the last 50 years. Primary evolution of waterfall was the V-life cycle, adopted by highly
regulated sectors since it included a quality assurance layer that described a reverse waterfall
process for verification and validation activities. When waterfall models were applied
incrementally, we talked about incremental models. These models, though still linear, show
the need to obtain an early functionality provision to obtain feedback and, therefore, try to
reduce risk. For example, the Spiral Model added a risk analysis phase in each iteration. As
another alternative to the rigid waterfall model, Rapid Application Development was
proposed to deal with the flexibility of software development but required regular access to
users. The Rational Unified Process (RUP) was the obtained result of a work that started
looking into why software projects had failed and it went back to the spiral model. RUP
divided the development process into four distinct phases each one involving business
modelling, requirements, analysis and design, implementation, testing and deployment.

Agile + DevOps

However, despite all these attempts for more efficient software project management, until
the late 90s many software projects of various sizes evolved into enormous disasters with
huge budgets and time outruns. The need for a new paradigm as a response to waterfall
models led to The Manifesto for Agile Software Development. It was a turning point in
software development which brought together several of the values and principles already
seen. The four values upon which the manifesto was signed are: (a) individuals and
interactions over processes and tools; (b) working software over comprehensive
documentation; (c) customer collaboration over contract negotiation; and (d) responding to
change over following a plan.

https://creativecommons.org/licenses/by/4.0/

41

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In the agile way of work, software projects should be delivered incrementally, piece by piece
where each piece is a fully functional unit of software. Software is being developed by small,
robust, and self-organized teams which respond quickly and interact efficiently with the
external environment. This is a smart way of working but requires a re-organization of many
aspects of the software development lifecycle, infrastructure and deployment operations
being one of them. If the team needs to build and deploy frequently and quickly every new
functional software unit it needs to be able to do it with minimum interactions and
communication overhead with other teams that are classically involved in these actions
(network, database, infrastructure, middleware). This challenge led to the rise of a new area,
the DevOps (Development Operations).

Since the first time the software business heard of DevOps in 2008, it has evolved really fast
turning the buzzword into a reality that is transforming digital business all over the world. The
philosophy behind DevOps aims at demolishing the walls that create operational silos in
business, development and operations/infrastructures creating an environment where
valuable work continuously flows, there is a continuous feedback up and downstream, and
continuous improvement is a common practice. Among many other practices, the full
autonomy and end-to-end responsibility of software development teams can be considered
the cornerstone of DevOps. These practices mean that software creation teams will have the
full responsibility to take an application to production: from the specification of
requirements/user-stories to its deployment in a server. SmartCLIDE focuses on DevOps
organizations offering assistance at all the stages of the software creation life cycle, namely:
specification and planning, creation, verification, packaging, release, configuration and
monitoring. The main practices that back autonomy and responsibility are the creation of
multidisciplinary teams (including staff with business and operations knowledge), continuous
communication, an extreme automatization of processes and the existence of a solid
common knowledge base.

Microservices

Apart from the software operations area, Agile paradigm also transformed the software
architecture scenery with the introduction of microservices. That’s because small, self-
managed teams are more likely to develop small or medium-sized, autonomous, self-
contained software modules which need a common execution platform along with rules for
inter-module communication. This describes the microservices paradigm. A microservices
architecture is a development methodology wherein you can fragment a single application
into a series of smaller services. Microservices are developed around business capabilities,
and as such are independently deployable with automated deployment mechanisms. Related
DevOps technologies can be used to help these automations. Each microservice is executing
in its own process and interacting with lightweight mechanisms with other microservices or
applications. This isolation and independence results in minimal management of these
services, which are usually being built in different programming languages and employ
different data storage technologies according to each element requirement. Below, we
discuss the main features and benefits brought by microservice architectures.

Figure 15: Monolithic vs. Microservices architecture

https://creativecommons.org/licenses/by/4.0/

42

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Dynamic Scalability. Based on the development of small isolated components, developer
teams can easily scale up or down based on the requirements of a specific element. The
flexibility of microservices lets a system expand fast without requiring a significant increase
in resources. A monolithic architecture would require scaling the whole application. Each
module in microservices can scale independently through: (a) X-axis scaling, by cloning with
more memory or CPU; and (b) Z-axis scaling, by size using shading.

Technology Flexibility. This refers to the microservice architecture flexibility on its technology
stack that leads to eliminating the constraints of vendor or technology lock-in and platform
dependency. Each microservice can be built up using the software stack required for the
specific element. Language, framework, data sources or any other dependencies required can
be provided from a container without affecting the whole application design or the
communication between the microservices in the ecosystem.

Easier and shorter development cycles. These are achieved through the important feature
of agility that further leads to productivity and speed, smaller project development, ease of
building and maintaining apps, that are independently DURS (deployed, updated, replaced &
scaled). Since each microservice is a separate project, professionals can get involved in the
process more easily because they do not have to study the system as a whole and they can
work only on their part. Decomposing the monolithic structure into separate services, leads
to team decomposition into more small engineering teams that work independently which
increases agility. The modern Agile approach is tightly connected with practices as DevOps
concepts, continuous integration (CI), and continuous deployment (CD). All of these practices
allow for faster deployment, problem-solving, and time to market. This type of agility when
combined with CI / CD tools, like Jenkins, and their underlying pipeline configuration
capabilities, results in faster and smaller project development life cycle procedures.
Compared to a microservices architecture, a monolithic architecture hampers the Agile and
DevOps processes because of its tight connections between each and every component.

Fault Isolation. Small isolated microservices are less likely to affect the overall ecosystem
when failing. A monolithic architecture is rigid when it comes to replacing functionalities or
making changes. Small changes in one place can cause ripple effects, bugs and errors in the
entire system due to the extreme coupling. As such microservices architecture improves
replaceability and upgradeability of the system.

Reduced Downtime / Quick Response-time. Developers and DevOps could use another
service when components fail, and the application continues its work independently. With
the use of related technologies that provide virtual servers, containers, pods and clustering
this architecture offer reduced response downtime.

The reader can find more details on this topic in the public deliverable D1.1-State-of-the-Art
and Market Requirements.

Quality and security in a microservices world
Security Concerns in Microservices Architectures

Microservices are generally considered as a variant of service-oriented architecture and
fortunately most aspects of security in microservice architecture are similar to monolithic
applications. However, microservice architectural patterns introduce specific security
challenges and problems, which should be treated differently. Based on the existing literature
review and best practices adopted by many leading IT companies (e.g. Amazon, Netflix,
Spotify, Twitter) we have identified several areas of security concerns and risk categories that
have arisen along with the microservice paradigm.

An overview of security challenges in microservice architectures has been proposed in the
form of a hierarchical decomposition in 6 layers: hardware, virtualization, cloud,
communication, service/application and orchestration.

https://creativecommons.org/licenses/by/4.0/

43

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Development of Secure Microservices

Microservices, as software products in nature, need to be developed having security in mind
from the early stages of their development. Simply ensuring the implementation and
deployment of mechanisms (either external or internal) that enhance the protection of the
microservices with respect to important security aspects, including availability,
confidentiality, and integrity, is not enough for fully protecting them against attacks.

Most of the software vulnerabilities stem from a small number of common programming
errors. For instance, SQL injection and cross-site scripting, which are listed both by OWASP
and NIST as the most dangerous and common vulnerabilities of web services and applications,
are caused by lack of input validation/sanitization, which is a relatively simple programming
error to address. Another source of security issues is the selection of insecure third-party
reusable components and Application Programming Interfaces (APIs). Appropriate tooling is
required to help them avoid the introduction of such security issues during the SDLC, and
therefore write more secure code.

Automatic Static Analysis (ASA) tools have been proven effective in uncovering security-
related bugs early enough in the software development process. They are applied directly to
the source or compiled code of the system, without requiring its execution. In fact, automatic
static analysis is considered an important technique for adding security during the software
development process. Moreover, static analysis is believed to be more effective in detecting
code-level vulnerabilities compared to other dynamic testing approaches like penetration
testing and fuzzing, as it is observed to produce significantly fewer false negatives.

Quality Assessment through Machine Learning

Machine Learning technologies have been applied to resolve multiple and quite diverse
research problems such as defect management, cost/effort estimation, management of
design-time quality attributes, recommendations for efficient project management, and
detection of security threats. In terms of quality attributes, the most relevant ones appear to
be the improvement of maintainability and functional suitability (i.e., correctness), followed
by security and business quality attributes. Overall, the following practices can be mapped to
quality management:

Cost/Effort Estimation: Monetization is a key concept in quality management. To this end,
any cost or effort estimation approach based on past data can be considered as relevant to
predict the cost of applying refactoring or to predict the cost of future maintenance effort. In
this category of Software Engineering problems special emphasis is placed on studies that
deal with software maintenance effort prediction.

Management of Design-Time QAs and Defects: In this high-level category, various related
problems have been identified. First, many studies focused on change- and fault-proneness.
These concepts are closely related to interest probability, in the sense that changes and faults
lead to maintenance activities that can accumulate interest. Additionally, other studies focus
on the detection of small occurrences. Finally, any method that is used for assessing or
characterizing the levels of QAs (e.g., maintainability) can be useful.

Requirements and Project Management Recommendations: Many studies use ML to provide
recommendations to developers related to which requirements shall be implemented first,
or which reported bugs shall be prioritized. Such recommendations could be useful for
Technical Debt prioritization, by considering that artefacts that are not expected to change
(due to bug fixing, or implementation of new requirements), shall not be prioritized for
design-time quality improvements.

Given the above, we can conclude to the following baseline market requirements for the
development of the SmartCLIDE solution:

https://creativecommons.org/licenses/by/4.0/

44

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE shall support SmartCLIDE should support SmartCLIDE may support

1. user-
friendly
GUI even
for non-
technical
users

2. visually intuitive interfaces to help users
with model generation and training

3. implementation of coding-by-example
principle

4. the provision of abstractions to minimize
manual intervention that are required by
the developers to the source code for
implementing new features

5. the classification of services, learning from
code or applying Machine Learning
algorithms

6. user stories, features specification

7. specification of acceptance criteria for
functional and non-functional
requirements

8. the short iterations concept

9. Continuous Integration / Continuous
Development (CI/CD)

10. automated testing in different flavours:
Acceptance Test-Driven Development
(ATDD) / Behavioral Driven Development
(BDD) / Test-Driven Development (TDD).

11. static analysis

12. working code as a source of
documentation

13. integration with run-time monitoring tools

14. version control of software

15. cloud native IDE for cloud native solutions

16. Business Process Modelling capabilities

17. service discovery and search

18. service integration through the online
dashboard

19. a wrapper which isolates user from Deep
Learning (DL) complexity as far as possible,
releasing developers from boilerplate code
generation

20. the provision of coding blueprints which
can serve as a base for more complex
tasks, making code more reusable and
easier to understand

21. refactoring

22. easy configuration

23. the provision of metrics for maintainability /
reusability at the service and the system
level

24. the extension of existing tools for
measuring maintainability and reusability to
capture the metrics at the service level

25. the provision of solutions for facilitating the
identification and elimination of critical
vulnerabilities that reside in the source
code of microservices from the early stages
of their development

26. the provision of an easy non-coding
implementation for DL usage (general
problems) depending on input data

27. the provision of code blueprints (skeletons)
based on Gherkin inputs for services
implementation

28. the discovery and composition of basic
services based on ontologies

29. scalability of processing capability

30. replicability of architecture to increase
flexibility

31. fault tolerance and reliable

32. security through isolation / dependability

33. the monitoring of maintainability and
reusability of the project under
development

34. dynamic software configuration

35. generation of automatic tests by natural
language interpretation of acceptance tests

36. the provision of on-the-fly suggestions on
how to improve the reusability and
maintainability of the system

37. SmartCLIDE may support

38. agile tools such as a Kanban board

39. implementation of artefacts for product and
sprint backlog management (e.g. Kanban or
Scrumban boards)

40. implementation of artefacts facilitating
waterfall life cycles

https://creativecommons.org/licenses/by/4.0/

45

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Service Creation
By University of Macedonia

SmartCLIDE Service Creation aims to deliver a faster, easier, and more user-friendly solution
than from-scratch development of services. The approach aims to automate several steps and
easily provide functionalities to developers, in a manner that enhances productivity and
minimizes distractions and time-consuming interactions with external tools. SmartCLIDE
analyzes the required steps a developer has to perform so as to deliver a fully functional
service, in order to come up with ways to fine-tune the flow.

Before starting the development process, several steps are required to setup the
development process:

• Creating a code repository, for e.g., a GitLab project

• Creating a CI/CD pipeline, for e.g., GitLab CI/CD or a Jenkins job

• Configuring them both to interact with each other

During code development, e.g., for the creation of a new service the developer needs to
interact with several tools:

• for writing code

• for collaborative development

• for performing tests and verifying the results

• for evaluating the quality and maintainability of the code

• for monitoring the progress of the project

• making the service invokable by being packaged into an image

Considering the actual coding part as the central point of software development, the main UI
for service creation should be the IDE. Several code development tools were evaluated, and
Eclipse Theia was selected as the final solution. Following our previous way of thinking, all the
other service creation functionalities should be accessible through the Eclipse Theia IDE to
minimize distractions and make the whole process easier and more efficient.

Starting with the creation of the necessary structure for development, a new widget was
developed for the IDE.

https://creativecommons.org/licenses/by/4.0/

46

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 16: Service Creation Widget

Here the user can input the required information, and the Service Creation component will
create and configure a new GitLab project. For now, there is also the ability to use Jenkins as
the CI/CD server. In that case, the GitLab project and the Jenkins job pairing is done by the
component automatically in the background, thus relieving the user from an otherwise dull
and time-consuming sequence of steps. After the completion of the structure creation, the
user is presented with a new Git URL.

Cloning the Git repository using Theia’s Git commands, the user can begin to code. Through
Theia’s integrated Git, the process of staging, committing, and pushing code changes is made
easy. Considering that the code repository is either paired with a Jenkins job or handled by
GitLab CI/CD, every code push triggers a pipeline. During the pipeline execution, tests and
code analysis can be executed automatically.

Provides valuable information to the user, is the evaluation of the quality and
maintainability of the code.

The next step, that provides valuable information to the user, is the evaluation of the quality
and maintainability of the code. This is achieved by using another newly created widget that
acts as a middleman between the IDE and the SmartCLIDE backend services.

https://creativecommons.org/licenses/by/4.0/

47

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 17: Technical Debt Principal widget

Figure 18: Technical Debt Interest widget (per File and Evolution)

The user provides the required information, in this case, the Git URL of the project, and
receives the results of code analysis. Depending on the user-specified steps of the pipeline,
the analysis process can vary in execution time. The request is passed to the SmartCLIDE
backend services, where the Reusability Index, Technical Debt Principal, and Technical Debt
Interest are calculated for the project.

As a final step, again using the pipeline, you have the ability to package the finished project
to a Docker image ready for deployment. Of course, considering that the above are part of an
early prototype, there is pending research and experimentation in order to find an optimum
and user-friendly approach.

https://creativecommons.org/licenses/by/4.0/

48

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE Deep Learning Engine
By AIR Institute

The rapid rate of technological and digital advancement requires the building of related
software, which is a time-consuming process. SmartCLIDE includes the advantages of Artificial
Intelligence (AI) and Cloud Computing. These technologies can help the developer overcome
the complexities associated with multi-platform software products.

Merging artificial intelligence with existing IDE functionality can bring new opportunities in
the most involved area in software development tools. This improvement can include
improving current IDE features, such as code suggestion or code search, resorting to
recommender systems to provide more accurate results to developers. Moreover, With the
advent of online code repositories and improved data collection, it has become possible to
add more intelligent functionalities in most of the automation tasks, such as service
classification.

Concerning Intelligent software engineering, theoretical [1][2] and empirical [3][4] works
have shown that software intelligence has been widely used in software development.
Accordingly, SmartCLIDE has proposed the DLE component, which is responsible for feeding
smart Assistants by intelligent models. DLE subcomponent responsibility can fall into the
following categories:

• Context monitoring specification in order to provide suggestions

• AI code completion for generating one-line code using language modelling

• The acceptance test set suggestion for giving the user a set of tests defined in Gherkin
format.

• Classification of Web services based on their meta-data in order to reduce service
selection search space

• Code repository suggestion is responsible for making suggestions for the user to
facilitate commits to the git repository.

• Service deployment environment recommendations in order to produce suggestions
for the sizing of the deployment environment.

• BPMN Items suggestions aim to help automation in selecting the next node/item in
the BPMN workflow

https://creativecommons.org/licenses/by/4.0/

49

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

The key functionalities of the subcomponents of the DLE are presented in the following table:

Component name Description

Service Classification
Model

The Service classification sub-component is responsible for classifying new
services. There are two important resources for new services. First, the
newly created services are created by SmartCLIDE users using the service
creation module. Second, the new observation by service discovery
module.

Template-based agent
Code Generation

This subcomponent is responsible for generating code based on internal
templates. The API returns related code snippets based on templates to
implement the workflow represented in BPMN in low code. The first
version of this API is designed for finding Java codes.

Code Generation Auto-
complete Model

This sub-component is responsible for one line automatic code generation
based on DL learning model, which is trained by available public source
codes.

Code Repository
Suggestions Model

This wizard is responsible for generating suggestions to the user to
facilitate commits to the git repository. Receiving information from the
monitoring system, and with the help of the DLE, it will determine the best
time to commit to the git repository.

Deployment
environment suggestions
Model

This sub-component is responsible for generating suggestions for the
sizing of the deployment environment

Acceptance test
Suggestions Model

The acceptance test set suggestion system, based on collaborative filtering
techniques, is responsible for providing the user with a set of tests defined
in Gherkin format to be applied to the workflow defined in the BPMN and
help verify if the expectations are met

BPMN Items suggestions The BPMN Items suggestion system consists of automatically selecting the
next node/item in the workflow being modeled during service composition
in BPMN format.

Predictive Model tool API This wizard, as a subcomponent of the DLE in SmartCLIDE, is accessible
through a RESTful API in several stages, structured in an ideally linear flow
that in practice allows iterative backtracking. Its objective is to guide the
user in the creation of a predictive model.

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

References
[1] “JAXEnter, What Theia is all about.” [Online]. Available: https://jaxenter.com/theia-ide-

efftinge-interview-134467.html

[2] “What are Message Brokers?,” Aug. 11, 2021. https://www.ibm.com/cloud/learn/message-
brokers (accessed Sep. 04, 2021).

[3] “What is Usability Testing?,” The Interaction Design Foundation. https://www.interaction-
design.org/literature/topics/usability-testing (accessed Sep. 07, 2021).

[4] “JUnit 5.” https://junit.org/junit5/ (accessed Sep. 07, 2021).

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

50

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE User Interface
By Unparallel

This article describes the design and current development progress of the three main
components of the User Interface: Toolbox, Workbench, and Run-time Simulation &
Monitoring Console.

The front-end user interface was designed considering the three main concepts in which
SmartCLIDE’s functionalities can be grouped:

• Workflows – result from combining services using Business Process Model and
Notation (BPMN) diagrams.

• Services – resources available through an URL that can be integrated to create
complex scenarios.

• Deployments – instances of services or workflows that run on specific environments
(e.g., Amazon Web Services).

Workflows
The actual design of the workflow requires a BPMN editor. The elements are dragged onto
the drawing area and the fields from the “Properties” and “Functionality” tabs of each
node/task must be completed. Throughout this process, the Smart Assistant aids the
developer by suggesting nodes as the workflow is being designed.

Figure 19: BPMN Editor

At any time, the user can change to the “Code Editor” tab, inspect, and manually edit the code
being generated by SmartCLIDE using an instance of the Theia code editor

https://creativecommons.org/licenses/by/4.0/

51

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 20: Eclipse Theia code editor

A task can be easily implemented using an existing service. For that, SmartCLIDE provides the
Service Discovery tool which receives details of new registries, analyses them, and suggests
services that match the meta-data provided by the developer. The default usages include
deployable versions, services connected to the web or services in source code.

Figure 21: Security analysis page

When the workflow is completed, the developer can test it.

SmartCLIDE allows the user to run in the background a security analysis on the workflow, as
well as assessing its vulnerability, namely identifying potential security breaches.

Figure 22: Vulnerability assessment page

Services
As in the case of the workflows, in the Services page, the user can filter the services by
developer (“My Services”, “Shared with Me” or “Public Services”) or any keyword (i.e., name,
URL, description, or license) or value (update date) written in the search bar. Finally, this page
is the starting point for creating, editing, or removing services as well.

https://creativecommons.org/licenses/by/4.0/

52

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 23: The main page of the services

SmartCLIDE also provides an Eclipse Theia instance, as a source code editor. For the services’
implementation, the Smart Assistant helps the developer with code auto-completion, …/…

Figure 24: Code auto-completion

…/… live template recommendations, …/…

Figure 25: Live template recommendation

…/… comments generation (and service testing automation (using JUnit).

https://creativecommons.org/licenses/by/4.0/

53

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 26: Comments generation

Deployments
On the Deployments page, the user can monitor his own deployments and deployments
shared with him. In addition, through this page, the user can create new and edit or remove
past deployments.

Figure 27: Main page of the deployments

Before deploying the workflow/service, the user can see a cost comparison that assists in
choosing the best cloud provider and then, go back to the deployment configuration page. It
is worth mentioning that the cost simulation service will only be able to provide accurate
values at the component level.

Figure 28: Main page of the cost comparison service

The user can choose the metrics to be automatically monitored during runtime in the
deployment configuration page. From the main page of deployments, the user monitors the
selected metrics. The data of the metrics are collected by the Runtime Monitoring &
Verification and the Context Handling components.

https://creativecommons.org/licenses/by/4.0/

54

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 29: Runtime metrics monitoring and visualization page

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design”.

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

55

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

SmartCLIDE DLE Component
By AIR Institute

The interest in building software is increasing with the move towards online businesses.
However, this process demands the building of customised software for the target business,
which is time-consuming. Accordingly, several models and concepts have emerged to create
software faster. One of the major topics is software reuse, which is the process of utilising
existing components to build new software. By increasing online services in public resources
and service registries, software reuse has captured the attention of engineers. These online
services include a wide range of software, applications, or cloud technologies that use
standard protocols to communicate and exchange data messaging. Moreover, developer task
automation can improve composing available online services. Automation includes concepts
and techniques that apply to developer tasks to increase productivity and reduce human
errors.

In this context, the SmartCLIDE toolkit tries to bring most service development tasks
together and also add automation techniques. This automation includes rule-based or AI-
based approaches, which are presented as functionality to help developers.

These functionalities allow developers to invest much more time into their domain
problem and software business logic rather than manual proper service

identification and development.

This article aims to introduce SmartCLIDE DLE models, a subset of intelligent software
development that refers to applying intelligent techniques to software development.
Proposed models try to provide a learning algorithm with the information that data carries.
SmartCLIDE data include internal data history and external online web services identified
from online resources. The following figure demonstrated the big picture of SmartCLIDE
external service identification.

https://creativecommons.org/licenses/by/4.0/

56

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 30: SmartCLIDE External Service Identification

A combination of the existing benchmark dataset and collected data enable SmartCLIDE to
implement a range of intelligent learning models. The embedded learning models in
SmartCLIDE seek to improve service development main tasks, which are:

1. Identifying system requirements
2. Finding and discovering service registries and providing a pool of services
3. Classifying the discovered services to identify a list of candidate services with the

same functionality for particular tasks
4. Ranking selected services with the same functionality

SmartCLIDE DLE functionality has been embedded in order to improve automation in
mentioned tasks. The selected AI approaches have demonstrated proper performance in
software intelligence. Language modelling based on the sequence to sequence models,
recommender systems, learning from existing code, and source code analysis are some
instances, to name a few.

Moreover, the collected data type, service metadata, or related text directs us to mostly take
advantage of text process trends, including deep learning methods such as encoder-decoder
models. These models have impacted rapid developments. Therefore, SmartCLIDE has taken
advantage of Transfer Learning and uses pre-trained models. The following table lists some
popular deep learning models in software intelligent literature.

Table 2: Popular Related Pre-trained AI models

Pre-
Trained-
Models

Year Description

OpenAI’s
GPT-3

2020 GPT-3 is the 3rd version release of GPT-2. This model is over 10x the size of its
predecessor, GPT-2)

OpenAI’s
GPT-Neo

2021 Microsoft published in September 2020 that it had authorised “exclusive” use of GPT-
3; others can still use the public API to receive output, but only Microsoft has control
of the source code. GPT-Neo goal is to replicate a GPT-3 sized model and open source
it to the public

OpenAI’s
GPT-2

2019 The model is that it is trained in a database of 8 million web pages. GPT2 base model
has 117M parameters, GPT2-medium has 345M and the GPT2-large 774M
parameters.

Bert 2019 BERT (Bidirectional Encoder Representations from Transformers) was published in
2018 and Google has announced a language model in October 2019. The significant
feature of BERT is using BiLSTM, the most promising model for learning long-term
dependencies. BERT base model has 110M parameters whereas BERT large has 340M
parameters.

https://creativecommons.org/licenses/by/4.0/

57

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

DistilBERT 2020 The smaller BERT version to consider resource usage and performance, has been
introduced, which is smaller and runs 60% faster than BERT .

In summary, for increasing productivity with real-world data, some of the AI-based models in
SmartCLIDE use pre-trained language modelings like BERT and GPT2. These models have
trained on enormous data on the internet and have demonstrated acceptable results in both
research and industrial communities. Yet, the individual classifiers are still considered based
on available data size. The best practice for the training process is to use customised local
data; nevertheless, in the beginning, we used some benchmark datasets in software
intelligence academic works and available open source data. Training time, resource
consumption, data storage capacity, and real-time interface interaction are other factors that
DLE has to deal with to design and implement learning models.

https://creativecommons.org/licenses/by/4.0/

58

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Backend services

This section presents the Backend Components and Services:

• Source Code Repository choice,

• Services Discovery, Creation and Management subcomponents,

• The Security Assurance module and its 2 mechanisms: Vulnerability Prediction and
Quantitative Security Assessment.

• The Message Oriented Middleware component in charge of the inter-component
communication with the SmartCLIDE platform.

• The User Access Management subcomponent.

• The Deployment workflow and its third-party services, and the CI/CD infrastructure.

• Tool support for architecture pattern selection in Cloud-centric service-oriented IDEs

• Runtime monitoring and Verification

• Vulnerability prediction

• Testing Cloud-based applications

https://creativecommons.org/licenses/by/4.0/

59

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Source Code Repository
By Netcompany-Intrasoft

A consequence of the dominance of Git in the market is that the majority of development
tools have excellent support for it as a version control system, either built-in or available as a
plugin. Regarding the tools selected to be reused by SmartCLIDE, Eclipse Theia includes built-
in git support, while workflows defined in jBPM are stored internally in Git and can be
synchronized to an external Git repository.

While Git on its own provides excellent support for version control, there are several services
that provide additional functionality on top, including GitHub, GitLab, and Atlassian
Bitbucket. Some common additional features are:

• A web-based user interface to support git repository configuration as well as other
value-added services

• Support for code review

• Support for CI/CD pipelines

For SmartCLIDE, the consortium has chosen to use GitLab since it is available as a pre-
packaged Docker image that can be deployed either on-premises or in the cloud and has a
number of other features that make it useful for integration in the SmartCLIDE environment,
such as:

• Integration with external security providers for access management, and Keycloak in
particular, which is the chosen User Access Management platform

• RESTful and GraphQL APIs that can be used by other components of SmartCLIDE

• Native support for CI/CD

• Hierarchical organisation of Git repositories using “Groups” and “Subgroups”

As a proposed structure, the top-level SmartCLIDE group contains sub-groups named
“Services” and “Workflows”, each of which contains GitLab projects that contain a Git
Repository plus other data for handling additional features such as merge requests and CI/CD.

Figure 31: Hierarchical Group Structure in GitLab

https://creativecommons.org/licenses/by/4.0/
https://git-scm.com/
https://www.jbpm.org/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://bitbucket.org/

60

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

There are a number of source-code artifacts required to implement a workflow in the
SmartCLIDE environment, which should all be version-controlled:

• Workflow definitions and metadata: Each workflow definition has its own repository
on the GitLab server. Data stored in version control for the workflow includes:

• Metadata regarding the workflow (e.g., name, description, and service dependencies)

• Gherkin description of the workflow

• BPMN model of the workflow.

• Service Source Code: In cases where a service is written from scratch, assembled using
a template, or otherwise modified from existing source code, the service should have
its own Git repository on the GitLab server. It is proposed to build a library of service
definitions, grouped separately from the workflow definitions, since each service has
the potential to be re-used in different workflows.

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

61

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Service Discovery, Creation and Monitoring
By AIR Institute

Discovery of Services and Resources
The Discovery of Services and Resources backend module is responsible for collecting data on
services discovered through the use of crawlers, maintaining an internal registry of services,
as well as serving queries/requests for services based on service usage details and service
code requests. This component communicates with the DLE (: Deep Learning Engine) to
classify services and receive updates.

The Service Discovery component will have five sub-components:

Subcomponent name Functionality

Crawlers Collect information from web service listings, service code repositories,
service registries and provide data ready to be stored in the registry.

Internal Services Index
Manager

Allows to store, search and classify both discovered and new created
services. This component communicates with the DLE classifier and uses
the Elasticsearch API to perform searches, along with its internal SQL
service registry.

Repository of discovered
services

Store the records discovered by the crawler tool in .csv files while
executing the retrieval requests, serving as a backup of the discovered
services until they are uploaded to the internal database.

New service Creation Allows new services, created from the Service, Composition and Testing
component to be stored and classified in the service registry index.

Search Services Using an internal SQL record and the Elasticsearch API, this component
will accept search requests that it will delegate to the internal registry and
then to Elasticsearch, returning the ranked services to the user based on
the search.

Service Creation, Composition and Testing
The Service Creation subcomponent will be responsible for handling the creation of a new
service. The component will create the required infrastructure for the development process
by automatically creating and configuring functions such as version control and continuous
integration. The above will be achieved by leveraging the already existing GitLab API. Apart
from aiding with the creation process, the component will accompany the user through it by
providing useful functionalities through interaction with other components and external
tools. The user will have the ability to request functionalities by notifying Deep Learning
Engine or Software Security. Furthermore, the user will be able to fetch analysis data from
the Reusability Index and TD Principal and Interest subcomponents. Finally, an API will be
exposed, that will allow the usage of certain functionalities when called by either the Eclipse
Theia extension, JBPM Workbench or any other type of UI. The overall purpose of the
component is to aid during the development process and ultimately lead to a better
implemented final result.

https://creativecommons.org/licenses/by/4.0/

62

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Runtime Monitoring & Verification
When services are created in SmartCLIDE the Runtime Monitoring & Verification (RMV) may
be employed to generate a runtime monitor for the service. Runtime monitors supplement,
at run time, other quality assurance measures such as testing and verification that are
employed at development time. Particularly in SmartCLIDE, when automated methods are
used to generate, or assist in the generation of, code for applications with minimal human
intervention, it is possible for there to be semantic “misunderstandings” between component
services composed to create the new service, or unexpected interactions of features of the
components, resulting in unexpected and undesirable behaviors. Runtime verification may be
able to quickly intercept misbehaving services and take a predetermined defensive or
remedial action.

The monitors created for a service may be reviewed by the user and disabled or additional
monitors specified and generated to be run with the service. In addition, custom monitoring
services may be created as SmartCLIDE generated services, to serve other user applications
or SmartCLIDE components.

The RMV has explicit support for security and context-sensitivity SmartCLIDE component in
addition to synthesized monitoring for created services and the creation of bespoke
monitoring services.

The RMV will incorporate and build upon several existing technologies as well as implement
new features and integrate them in a novel way to support the runtime quality assurance goal
of SmartCLIDE.

Figure 32: Runtime Monitoring and Verification Component Diagram

Among the incorporated extant technologies are:

• The overall architectural framework of command processor, server structure, RESTful
APIs, and testing from an implementation of the Next Generation Access Control
standard [1] by The Open Group [2].

• The Event Processing Point (EPP) from TOG-NGAC an adaptation and extension of the
EPP will form the core of the Monitoring Framework component

• The runtime verification extension [3] to the symbolic model checker [4] will form the
core of the Monitor Creation component

• A recent audit API addition to TOG-NGAC will be adapted for the Audit Agent.

The RMV will include newly developed components for SmartCLIDE including:

https://creativecommons.org/licenses/by/4.0/

63

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

• Create SMV model K for the service to be monitored from service specifications used
by SmartCLIDE service creation

• Create property specifications in Linear Temporal Logic (LTL) from service
specifications

• Logging Agent for flexible and configurable logging

• Notification Agent to provide flexible and configurable notification to SmartCLIDE
components

• Monitor Library to hold various facts and rules needed by other components and
modules of RMV

We provide a brief description of the function of each of the main subcomponents in the
following table:

Subcomponent name Functionality

Monitor Creation Monitor creation utilizes service specifications of the service to be
monitored to build a behavioral model and a set of essential properties.

Monitor Library This component is a database of various facts and rules used by other
modules of the RMV system. Information contained in the Monitor Library
includes:
– SMV (: Symbolic Model Verifier) specification patterns
– LTL (: Linear Temporal Logic) property patterns

Monitoring Framework This component is the hub and control system of RMV. It contains the
Event Processing Point (EPP) which receives events and current property
verdicts from the monitors running with their associated services.
Received events are processed according to the Monitoring Framework
Configuration Data which includes Event-Response Packages (ERP) that
define event patterns and associated responses. Received events are
checked against cached event patterns. When a pattern match occurs the
associated response from the event response cache is executed by the
Event Response Execution function.

Audit Agent Security auditing services comprising the abilities to:
– Define a set of auditable events
– Select a subset of the auditable events to be collected in the audit log
– Define the format of the audit log record
– Generate an audit log record in response to a reported event
– Store audit records in a persistent audit log file through the Logging
Agent
– Manage the audit service and audit log files
– Generate audit alarms to be delivered through the Notification Agent

Logging Agent Filter and store log messages in persistent log storage according to the
Logging Configuration Data

Notification Agent Send direct notifications to SmartCLIDE components according to the
Notification Configuration Data

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design”.

References
[1] “International Committee for Information for Information Technology Standards – Cyber

security technical committee,” 1. American National Standard for Information Technology
Next Generation Access Control (NGAC).” ANSI, INCITS 565-2020, April 2020.

[2] “NGAC policy tool, policy server, and EPP Release note for v0.4.7 development version,”
Rance DeLong, The Open Group, July 2021.

[3] A. Cimatti, C. Tian, and S. Tonetta, “NuRV: A nuXmv Extension for Runtime Verification,” in
Runtime Verification, Cham, 2019, pp. 382–392. doi: 10.1007/978-3-030-32079-9_23.

[4] R. Cavada et al., “The nuXmv Symbolic Model Checker,” in Computer Aided Verification,
Cham, 2014, pp. 334–342. doi: 10.1007/978-3-319-08867-9_22

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

64

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Security
By CERTH

Software security is a critical consideration for software development companies who want
to provide safe and dependable software to their clients [1]. Modern software applications
are typically accessible through the internet and handle sensitive data. As a result, they are
continually vulnerable to harmful assaults. Exploiting a single vulnerability can have far-
reaching repercussions for both the end-user (e.g., information leakage) and the organization
that owns the affected software (e.g., financial losses and reputation damages) [2]. As a
result, the software industry has shifted its focus towards creating proactive approaches that
may give developers suggestive information about the security quality of their programs by
detecting susceptible hotspots in the source code.

The Vulnerability Prediction (VP) mechanism is one such system that enables the prediction
and mitigation of software vulnerabilities early in the development cycle. By assigning limited
test resources to potentially risky items, VP models (VPM) can be utilized to prioritize testing
and inspection efforts. Several VPMs have been developed throughout the years that use a
variety of software elements as inputs, such as software metrics, static analysis warnings, and
a text mining approach known as bag-of-words (BoW) [1], [3]. Although these models have
shown encouraging outcomes, there is still room for improvement. Static analysis warnings
contain a high number of false positives in addition to severe alarms. The BoW technique
appears to produce better results than static analysis alerts and the usage of software
metrics; however, it is overly reliant on the software project used for model training. As a
result, current research has switched its attention to more complex approaches for detecting
patterns in source code that signal the presence of a vulnerability. They concentrate on
collecting information from a specific software application’s raw source code or from abstract
representations of its source code, such as their Abstract Syntax Tree.

Using the raw text of the source code in the form of sequences of instructions, this work
creates deep-learning (DL) models capable of predicting whether a software component is
susceptible or not, employing approaches from the fields of natural language processing (NLP)
and text classification. We used approaches from the NLP discipline for this aim. The source
code is seen as text, and the vulnerability assessment work, like sentiment analysis, is
regarded as a text classification problem. So, using NLP techniques such as Bidirectional
Encoder Representations from Transformers (BERT) [4], data pre-processing and
transformation to sequences, and training DL models (e.g., recurrent neural networks)
suitable for analyzing sequential data, we detect potentially vulnerable components using a
binary classifier trained primarily on text token sequences from the source code.
Furthermore, software measurements acquired by static code analyzers, in conjunction with
text mining approaches, might be utilized to improve the prediction performance of the
models.

https://creativecommons.org/licenses/by/4.0/

65

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 33: Software Security Assurance Module

Subcomponent name Functionality

Quantitative Security
Assessment

Responsible for assessing security level of software applications based
on Security Assessment Model

Vulnerability Prediction Is responsible for predicting security issues (i.e., vulnerabilities)

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

References
[1] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static Analysis-Based Approaches for

Secure Software Development,” in Security in Computer and Information Sciences, Cham,
2018, pp. 142–157. doi: 10.1007/978-3-319-95189-8_13.

[2] E. Gelenbe et al., “NEMESYS: Enhanced Network Security for Seamless Service Provisioning in
the Smart Mobile Ecosystem,” in Information Sciences and Systems 2013, Cham, 2013, pp.
369–378. doi: 10.1007/978-3-319-01604-7_36.

[3] S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and Discovery Using
Machine-Learning and Data-Mining Techniques: A Survey,” ACM Comput. Surv., vol. 50, no.
4, p. 56:1-56:36, Aug. 2017, doi: 10.1145/3092566.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Jun. 2019, pp.
4171–4186. doi: 10.18653/v1/N19-1423.

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

66

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Intercommunication
By CERTH

Message Oriented Middleware (MOM) component is responsible for inter-component
communication with the SmartCLIDE platform. The MOM is designed and implemented as a
message broker which is a piece of software that enables applications, services, and systems
to communicate with one another to exchange information [1]. This communication is
achieved by translating messages between formal messaging protocols, allowing
independent services written in different languages or implemented in various platforms to
interact with each other.

SmartCLIDE’s MOM component offers standardized means of handling the data flow between
the components of the SmartCLIDE platform. Thus, developers using the SmartCLIDE platform
can focus on the core logic of the application. MOM can validate, route, store, and deliver
messages to the appropriate destinations, allowing senders to issue messages without
knowing where the receivers are and whether they are active or not, thus facilitating the
decoupling of services and processes within systems.

There are several message brokers available, with popular choices being Apache Kafka and
RabbitMQ. For the implementation of the MOM component, we have used the official
RabbitMQ Docker image [2] in order to run the RabbitMQ server inside a Docker container.
This is the easiest way to have a RabbitMQ instance up and running and enhances portability.
For making RabbitMQ available to the other SmartCLIDE components, we have set up a
RESTful API with the help of Spring Boot, thus offering HTTP access to the message broker.

MOM component diagram is presented in the next diagram. The MOM component resides in
the center of the system architecture and comprises three sub-components, namely the
Message Checker, the Message Transformer, and the Message Router. The Message Checker
is the first point of interaction when communicating with the MOM component and verifies
the validity of the incoming/outcoming messages while the actual routing of the messages is
implemented by the Message Router sub-component. The Message Transformer modifies
each message accordingly so that it can be parsed at both ends (publisher and consumer).

https://creativecommons.org/licenses/by/4.0/

67

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Subcomponent name Functionality

Message Checker MoM will be able to check if the exchanged messages, either at the
sender’s or at the receiver’s end, comply with a specific format.

Message Transformer MoM will transform the data/messages from the sender’s native format to
the receiver’s native format.

Message Router MoM should support several message routing policies and message
delivery guarantees (e.g., at-most-once, and exactly-once).

Figure 34: MOM Component Diagram

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

References
[1] “What are Message Brokers?,” Aug. 11, 2021. https://www.ibm.com/cloud/learn/message-

brokers (accessed Sep. 04, 2021).

[2] “Rabbitmq – Official Image | Docker Hub.” https://hub.docker.com/_/rabbitmq (accessed
Sep. 06, 2021).

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

68

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

User Access Management
User Access Management (UAM), also known as identity and access management (IAM), is
the act of defining and managing the roles and access privileges of individual network entities
(users and devices) to a variety of cloud and on-premises applications. Users include
customers, partners, and employees, while devices include computers, smartphones, routers,
servers, controllers, and sensors. The core objective of an IAM solution is to assign one digital
identity to each individual or a device. Once that digital identity has been established, the
IAM solution maintains, modifies, and monitors access levels and privileges through each
user’s or device’s access life cycle.

In today’s complex compute environments, IT departments are under increased regulatory
and organizational pressure to protect access to corporate resources. As a result, they can no
longer rely on manual and error-prone processes to assign and track user privileges. IAM
automates these tasks and provides a seamless way to manage user identities and access all
in one place. The core responsibilities of an IAM system are:

• Verification and authentication of users based on their roles and contextual
information such as geography, time of day, or (trusted) networks

• Capturing and recording of user login events

• Managing and provision of visibility of the business’s user identity database

• Managing the assignment and removal of users’ access privileges

• Allowing system administrators to manage and restrict user access and monitor
changes in user privileges

The adoption of an Identity Management system provides a wide range of benefits to
organizations, such as:

• Secure access: access privileges are granted according to the selected policy, and all
individuals and services are properly authenticated, authorized and audited

• Reduced risk: companies have greater control of user access, which reduces the risk of
internal and external data breaches

• Ease of use: the use of an IAM framework can make it easier to enforce policies around
user authentication, validation and privileges

• Reduced IT costs: businesses can operate more efficiently by decreasing the effort,
time and money that would be required to manually manage access to their networks

• Meeting compliance: an effective IAM system facilitates businesses to confirm
compliance with critical privacy regulations such as HIPAA, the Sarbanes-Oxley Act and
GDPR

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

69

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Deployment and CI/CD

Deployment and deployment monitoring service
This is a very first approach where we will only consider:

GitLab + “SmartCLIDE Interpreter + Jenkins + Docker + Kubernetes/AWS

Figure 35: Set of Applications Diagram. Workflow

The deployment and deployment monitoring microservice makes use of the following
elements to perform the deployment and monitoring tasks, from the GitLab-ci pipeline file
until the deployment is monitored as it runs on the Kubernetes cluster, be it on any cloud
infrastructure.

Element name Role

Kairos interpreter The Kairos interpreter is a microservice developed by our partner KAIROS
whose main function is, from a GitLab-ci file, to obtain a Jenkins pipeline
file.

Jenkins Jenkins was chosen as the CD/CI engine since it is the main target of the
Kairos interpreter as a CD/CI engine. In addition, since it is open-source
software, it can be deployed on the developer’s machine in the
development and testing tasks of the deployment microservice. As more
and more organizations are using Docker to unify their build and test
environments for their applications, Jenkins allows us to interact with
Docker through default Docker support in its pipelines. On the other hand,
Jenkins pipelines allow images to be built from the Dockerfile found in the
main folder of the software project.

Docker registry Docker Registry is an application that manages to store and deliver
Docker container images. Registries centralize container images and
reduce build times for developers. Docker images guarantee the same
runtime environment through virtualization, but building an image can
involve a significant time investment. Docker registry will be used as a
central repository of images once they are built. It will be from this service
from where the Kubernetes deployment will obtain the image of the
containers to be deployed in the cluster.

Kubernetes cluster Because Kubernetes is an open-source project, you can use it to run
containerized applications in any environment without having to change
your operational tools. A large community of volunteers maintains and
improves Kubernetes software. In addition, many other vendors and
open-source projects create and maintain Kubernetes-compatible
software that you can use to enhance and extend your application
infrastructure. The scope of the service also includes the use case of

https://creativecommons.org/licenses/by/4.0/

70

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

obtaining information about the status of the service while it is running in
Kubernetes. Some of this data can be RAM memory in use, network
information, or CPU usage. It is assumed that a Kubernetes cluster is
running on any of the clouds, such as AWS, Azure, or Google Cloud
Platform.

SmartCLIDE CI/CD
The proposed basis for the SmartCLIDE CI/CD infrastructure is the built-in CI/CD capability
provided natively by the chosen version control system, GitLab. For the Continuous
Integration (CI) component of this, there are several areas to consider:

• What elements of the system are subject to CI

• How CI integrates with the development strategy

When considered at the level of individual services, CI is a requirement for those services
which are defined within the SmartCLIDE source code repository, i.e., services which are
developed from scratch, modified from a template, or generated as source code with
SmartCLIDE tooling. CI on GitLab is generally configured by means of a configuration file,
namely the GitLab-ci.yml file, at the root of the corresponding source repository. Within this
configuration file, the various stages of the build pipeline are defined. A build pipeline might
typically involve the following stages:

• Build – compile the code in the repository

• Unit test – run unit tests

• Package – package the service into a deployable unit

• Integration test – run integration tests

• Deploy – deploy to an environment

For Continuous Delivery (CD) at the workflow definition level, the flexibility afforded by the
GitLab CD functionality, with built-in support for Docker and Kubernetes deployments and
the ability to run arbitrary scripts, may serve as the basis for the deployment of the composed
service.

Figure 36: CI Server & Testing and QA Component Diagram

Subcomponent name Functionality

CI Server & testing
Component

Perform automated build, test, and packaging of services from source
code.

If you wish to learn more about this aspect of the SmartCLIDE project, we invite you to read
the public deliverable entitled “D3.1 – Early SmartCLIDE Cloud IDE Design“.

https://creativecommons.org/licenses/by/4.0/
https://smartclide.eu/?smd_process_download=1&download_id=2022

71

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Tool Support for Architectural Pattern Selection in
Cloud-centric Service-oriented IDEs

Software architecture is a central part of software engineering and plays a crucial role in the
success of software applications, both in terms of business and engineering aspects. Deciding
on a specific software architecture requires careful analysis of the software application’s
requirements and is not trivial.

Architectural patterns are general design structures that have been used successfully in
software architecture design. They provide rules and guidelines to describe high-level
software components and the interrelation between them, and address commonly occurring
issues in software architecture design, such as limitations in software performance,
availability or minimization of business risk. Architectural patterns are similar to software
design patterns but have a broader scope.

Selecting an architectural pattern is a challenging task for a software architect.

Software architecture design is typically made in the early stages of a software development
life cycle and is very crucial for the quality, success and further management of the software.
Selecting an architectural pattern is a challenging task for a software architect. It requires not
only technical knowledge about these patterns, but also expertise in deciding which pattern
is the most suitable architecture for a software system (considering its requirements).

While modern software development practices benefit from strong tool support offered by
IDEs (features like build automation, debugging, refactoring, code search, continuous
integration and continuous deployment), the need for a support system for architectural
pattern selection is still not sufficiently met in practice. In particular, software engineers could
greatly benefit from tool support that assists them in their architectural pattern decision
process.

To address this issue we developed a framework for architectural pattern selection (APS) that
can be integrated as a tool support feature in IDEs. Our framework currently supports the
following six common architectural patterns:

1. Layered architectural pattern
2. Event-driven architectural pattern
3. Microkernel architectural pattern
4. Microservices architectural pattern
5. Service-oriented architectural pattern
6. Space-based architectural pattern

https://creativecommons.org/licenses/by/4.0/

72

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

In order to provide tool support for the decision-making process of architectural pattern
selection, certain information about the software design and requirements must be acquired.
Our framework for architectural pattern selection uses four specific categories of high-level
information about the application to be developed and the architecture for it. These
categories are as follows:

• Application domain: The general domain of the software application such as web-
based systems, distributed systems, cloud computing applications, mobile applications
etc.

• Application properties: High-level properties of the software application such as
specifications of application components or business constraints.

• Non-functional requirements: General operational specifications of the software
application such as maintainability, performance, portability, reliability and security.

• Architectural features: High-level properties of the software architecture such as
specifications of architecture component communication, component interoperability
and data volume.

These categories are explored through a survey where at least one question per category can
be asked to a software developer/architect. This survey is designed to collect both the
background information about the application and the preferences in terms of the
operational capabilities of the application as well as the desired features of the architecture.

A scoring system associates every survey item to each of the six supported architectural
patterns, to provide an evaluation. These values indicate how strongly an architectural
pattern is suitable to the given specification. This evaluation is based on a comprehensive
state-of-the-art analysis of architectural patterns and their relation to application domains
and architecture requirements. The scoring values are used to calculate the total value of
each architectural pattern. The pattern with the highest total score indicates the most
suitable pattern based on the data input. The top three highest ranking patterns and their
ranking can be suggested for the user’s consideration.

The APS framework is implemented as a backend service that provides a REST API for the
survey content and its evaluation. The API implementation is independent of the survey
content and the specific scoring values used for the evaluation. The survey content is
prepared and stored as a JSON object that can be retrieved and used to create and present it
in an IDE. The scoring values used for the evaluation are also stored as a JSON object. Both of
these JSON objects are configurable within the API if desired. This makes the backend API
generic in terms of API functionality and it can be integrated in IDEs to offer tool support for
architectural pattern selection.

The APS framework and its backend API are currently being integrated within the SmartCLIDE
research project. Architectural pattern selection is supported in the SmartCLIDE IDE as part
of the service creation process using the user frontend of the IDE. The service creation flow
begins with the user starting to create a new service, which is followed by the selection of a
Git system to be used together with corresponding credentials. After the user provides the
details of the service to be created the next step is architectural pattern selection. This step
provides assistance to the user if the user decides to choose an architectural pattern for their
service. This assistance is optional and is provided via the APS wizard.

The APS wizard first provides a list of supported architectural patterns to the user to choose
from. The user can choose one pattern from this list and proceed to the next step. In case the
user does not know which architectural pattern to choose, they can further use the APS
wizard to receive a list of suggestions which patterns would be most suitable for their service
based on high-level information about their service that they can provide at this stage. If the
user decides to skip the selection or the application of an architectural pattern, the user front
end finishes the service creation.

The backend API will be extended with the implementation of the architectural pattern
application that finalizes the service creation flow in the IDE. The APS framework will be
evaluated in various industrial use cases of the SmartCLIDE project. Based on the use case

https://creativecommons.org/licenses/by/4.0/

73

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

results, the survey content and evaluation values can be improved and re-configured in the
IDE if necessary. Further future work includes increasing the number of supported
architectural patterns. Currently, all supported architectural patterns are individual patterns.
It would be desirable to support combinations of individual patterns as well.

https://creativecommons.org/licenses/by/4.0/

74

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Runtime Monitoring and Verification (RMV)
By OpenGroup

SmartCLIDE offers services to accelerate the creation and deployment of Cloud solutions by
providing the ability for non-programmers to construct applications and new services using
smart automation. One of the backend services provided by SmartCLIDE is runtime
monitoring and verification (RMV) which in conjunction with automated testing is applied to
assure the quality of the created services. In this paper we describe the objectives of RMV,
and provide an overview of the approach and the benefits.

SmartCLIDE Quality Assurance
SmartCLIDE constructs new services according to the user’s specifications from pre-existing
and bespoke components. Supplementing the construction of new services, SmartCLIDE’s
strategy for quality assurance (QA) of user-constructed services includes both development-
time and runtime quality assurance for functional and non-functional properties. In addition
to the expected functional behavior of a service, key characteristics such as security, safety,
privacy, resilience and reliability are general categories of runtime quality attributes that may
be required of the service. Runtime QA is applied along with design-time QA, development
testing, verification and qualification testing to assure that the needed quality attributes have
been achieved.

Assurance of the correctness of a service may be addressed largely by the manner of its
construction, giving rise to the term correct by construction. To achieve it a rigorous
methodology is required, typically supported by automation3 and tools. By automating the
construction process certain sources of potential flaws may be systematically eliminated. In
SmartCLIDE automation extends to AI-powered assistance in the selection and composition
of components. SmartCLIDE can already make some claims to correctness by construction
because the automation is systematic. However, the details of the construction methods may
not be rigorous enough to extend correctness by construction to every functional or non-
functional claim that could be made for a SmartCLIDE-constructed service.

Whilst, runtime QA is also a concern for entirely human-fashioned software artifacts, it may
be even more beneficial for software that is constructed without human involvement and
scrutiny of every design and implementation decision. By reducing the development effort
through automation some of the detailed expert human scrutiny that the service
development would otherwise receive will likely not occur. Subtle semantic anomalies and
“corner cases” may go undetected when automation uses service specifications to construct
service implementations from diversely sourced and specified components, and only surface
when run-time execution behaviors are observed.

3 Here “automation” or “automated” are used for processes that are fully or partially
automated.

https://creativecommons.org/licenses/by/4.0/

75

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Complementary Quality Assurance Methods
Among the methods that that could have been utilized for quality assurance of SmartCLIDE
created services are: correctness by construction, formal verification (FV), automated testing,
and runtime verification RV. All of these methods, except for formal verification, are
employed in SmartCLIDE. FV provides construction-time assurance that increases confidence
that runtime behavior will not include unwanted effects by exploring all possible executions
a priori.

The application of FV, even the “fully-automated” kind, is typically expensive: being
laborintensive and requiring specialized expertise. It must be re-performed whenever the
model is changed. Furthermore, it typically only verifies the model (an abstraction) of the
implementation as opposed to the actual executable implementation. Due to these
considerations we do not further consider FV as a viable routine activity in SmartCLIDE.

Conventional testing is one of the standard methods of discovering and correcting the sources
of errant behaviours, and this method is also applied in SmartCLIDE by doing automated
testing for SmartCLIDE-created services in addition to the unit and integration tests of the
SmartCLIDE components themselves. Testing of SmartCLIDE-created services has the benefit
that the actual service implementation is exercised in the tests rather than a model of the
implementation as would be the case in FV. Testing involves identification of a finite number
of test scenarios and test cases. As always, the issue with finite testing of a reasonably
complex system, which has a potentially, and practically infinite number of distinct
behaviours, is one of confidence in the adequacy of the testing, in particular that of chosen
test cases and the test data. When test cases and test data are chosen automatically an
additional source of automation-induced error or incompleteness is a source of adequacy
concern.

Another potential source of runtime misbehavior has nothing to do with the construction or
the functionality of a service but with the assumptions that underlie, possibly implicitly, the
implementation of a component or a service. The implementation is only valid as long as
these assumptions are satisfied and maintained. When assumptions are violated, either
through incorrect composition of components, or through dynamically changing conditions
at runtime, the implementation is likely to misbehave or completely fail.

Runtime monitoring and verification (RMV) is an aspect of the SmartCLIDE QA strategy that
is used primarily at run time but also may be beneficial in the latter stages of development.

RMV is able to check the monitored service at every step to confirm that it’s behavior in the
current run is consistent with its specifications and the, necessarily limited, results of prior
finite testing. One of the main strengths of runtime verification is that it has the potential to
detect a deviation from the required behaviour due either to an incorrect implementation of
the specified behavior or to the, possibly dynamic, invalidity of an assumption.

Assurance of the runtime behaviour is addressed by validating that the service actually
exhibits behavior consistent with the user’s specification and with development-time test
results, and that the assumptions made about the runtime environment, which were made
at design time and thus built into the construction of the service, continue to be valid as the
service executes.

Runtime Monitoring & Verification
Figure 37 shows an overview of the components of the SmartCLIDE RMV subsystem. The RMV
subsystem interacts with other SmartCLIDE components through Message Oriented
Middleware (MoM) or direct IPC, and uses an external tool, NuRV [CTT19b], to generate
property monitor state machines. Property monitors are synthesized from a formal model of
the nominal behavior of the created service and a specification of required properties using
the method of assumption based runtime verification (ABRV) [CTT19a].

https://creativecommons.org/licenses/by/4.0/

76

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Figure 37: RMV Subsystem Overview

These components include:

1. Monitor Creation - Uses a Service Specification provided from SmartCLIDE along
with elements contained in the Monitor Library to construct a property monitor
using the NuRV monitor synthesis tool, and a configuration vector for the Monitor
Sensor. It stores information about the created monitor in the Monitor Library.

2. Monitor Sensor - A component with versions implemented in various programming
languages that provides presence for the monitor within the SmartCLIDE-created
service. When the service starts the Monitor Sensor is customized with specifics
from the configuration vector. Subsequently the Monitor Sensor generates
messages to Monitor Event Processing conveying information about the
configured variables it shares with the monitored service.

3. Monitor Event Processing - Receives messages from the Monitor Sensor, which it
processes according to the configuration for that monitor that is stored in the
Monitor Library. The configuration may indicate that the values of logical
conditions, based on the values of variables within the monitored service, are to
be sent to a NuRV property monitor that will return a verdict on whether the
monitored property is satisfied, violated, or (as yet) unknown. The result may be
sent to other SmartCLIDE components that have registered for notifications.

4. Auditing, Logging, and Notification - Provides the ability to distribute monitoring
data and results, to record security-relevant (or other property related) events in a
persistent log, and to provide a consolidated auditing, logging and notification
service to registered SmartCLIDE or application components.

5. Monitor Library - Contains global definitions and patterns for monitor construction
as well as information about the specific monitors that have been constructed. The
monitor library is access both at monitor construction time and at monitor
execution time.

6. RMV User Interface within the SmartCLIDE Service Creation UI - An optional user
interface that can be used by a service developer to modify the configuration of a
service monitor, to enable/disable monitoring actions, add/delete monitored
variables and properties, and regenerate a modified monitor. Without the UI such
changes can also be achieved by editing the generated monitor's configuration
vector.

In addition to the ability to monitor created services to assure that they operate within their
specifications, the RMV framework provides the capability to construct bespoke monitoring
services using the RMV monitor sensor to gather runtime data, that may be used in arbitrary
ways by other system services or as part of application services.

https://creativecommons.org/licenses/by/4.0/

77

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

References
[CTT19a] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime

verification with partial observability and resets. In Bernd Finkbeiner and Leonardo Mariani,
editors, Runtime Veri cation, pages 165{184, Cham, 2019. Springer International Publishing.

[CTT19b] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Nurv: A nuxmv extension for
runtime verification. Berlin, Heidelberg, 2019. Springer-Verlag.

https://creativecommons.org/licenses/by/4.0/

78

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Vulnerability prediction
based on Text Mining and BERT

By CERTH

Vulnerability Prediction – Importance and Challenges
Building secure software is highly important for both the end users and the owning
enterprises. Nowadays, software controls critical daily activities, and therefore a security
breach could lead to important implications both to user security (or even safety), and to a
company’s reputation and finances. To this end, software development companies have
shifted their focus towards the security-by-design paradigm in order to build software that is
highly secure from the ground up. In order to achieve this, several tools are employed during
the development process, which enables detection and elimination of potential
vulnerabilities.

Vulnerability prediction is responsible for the identification of security hotspots,
i.e., software components that are likely to contain critical vulnerabilities.

One important mechanism that facilitates the identification of vulnerabilities in software is
vulnerability prediction. Vulnerability prediction is responsible for the identification of
security hotspots, i.e., software components that are likely to contain critical vulnerabilities.
This is achieved through the construction of vulnerability prediction models (VPMs), which
are mainly machine learning models that are built based on software attributes retrieved
primarily from the source code of the analysed software (e.g., software metrics, text features,
etc.). The results of the vulnerability prediction models are highly useful for developers and
project managers, as they allow them to better prioritise their testing and fortification efforts
by allocating limited test resources to high-risk (i.e., potentially vulnerable) areas.

Among the existing solutions, text mining-based VPMs have demonstrated the best predictive
performance. The majority of the text mining-based models that have been proposed in the
literature so far are based on the concept of Bag of Words (BoW), which is actually a vector
with the tokens (i.e., keywords) that are found in the source code along with the number of
their occurrences, as well as on the concept of word token sequences (utilising also word
embedding techniques for their representation), which corresponds to the sequences of the
instructions in the analysed source code. Despite their promising results, these solutions have
not demonstrated perfect predictive performance, which could allow them to be used reliably
in practice, and therefore there is room for improvement. Recently, more advanced concepts
have started being investigated in the literature in order to further enhance the predictive
performance of text mining-based VPMs. One interesting direction which has recently started
gaining the attention of the research community []-[], is the examination of whether the

https://creativecommons.org/licenses/by/4.0/

79

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

adoption of transformers, such as the Bidirectional Encoder Representations from
Transformers (BERT) and its alternatives, could lead to more accurate vulnerability prediction.

To this end, we developed deep-learning (DL) models capable of predicting whether a
software component is vulnerable, using the raw text of the source code in the form of
sequences of instructions, utilising methods from the field of natural language processing
(NLP) and text classification. In other words, we focused on building text mining-based VPMs
utilising the popular concept of word token sequences and deep learning. We also examined
whether the adoption of BERT could lead to sufficient vulnerability prediction models.

What is BERT?
Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based
machine learning technique for natural language processing (NLP) pre-training developed by
Google. BERT makes use of Transformer. In its vanilla form, Transformer consists of two
separate mechanisms: an encoder that reads the text input and a decoder that generates a
prediction for the task. Because the goal of BERT is to generate a language model, only the
encoder mechanism is required. The Transformer encoder reads the entire sequence of
words at once, as opposed to directional models, which read the text input sequentially (left-
to-right or right-to-left). As a result, it is regarded as bidirectional, though it would be more
accurate to describe it as non-directional. This feature enables the model to learn the context
of a word based on its surroundings (left and right of the word). The Transformer encoder is
described in detail in the figure below:

Figure 38: Transformer encoder

As can be seen by the Figure above, the input of BERT is a series of tokens that are embedded
into vectors before being processed by the neural network. The output is a sequence of H-
dimensional vectors, each vector corresponding to an input token with the same index. The
vectors that are produced by BERT can be utilized for building machine learning models for
any classification problem, including vulnerability prediction, as we investigate in the present
work.

Vulnerability Prediction Models
using Text Mining and BERT
For the purposes of the present work, we utilised two popular vulnerability datasets proposed
by the National Institute of Standards and Technology (NIST) and the OWASP, which contain

https://creativecommons.org/licenses/by/4.0/

80

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

examples of vulnerable and clean software components written in Java and C++ programming
languages. For the case of C/C++ we utilised the Juliet dataset proposed by NIST, which
contains 7651 source code files, 3438 of which are considered as vulnerable and the rest 4213
are considered as clean. For the case of Java, we utilised the OWASP Benchmark, which
contains 1415 vulnerable class files and 1325 class files considered as clean.

For each dataset, the source code files were initially cleansed (i.e., comments were removed,
literals were replaced with generic values, etc.) and subsequently tokenized in order to
retrieve the sequences of their tokens. In order for these vectors to be used for building
vulnerability prediction models, they need to be turned into numerical values, since the
majority of the machine learning algorithms, including neural networks that are our main
focus, operate on numerical inputs. More specifically, integer encoding was employed in
order to turn the tokens into integers, and then the embedding vectors were produced. The
embedding vectors are, in fact, the numerical representation of the text tokens, which can be
used as inputs for our models.

In order to construct VPMs based on the selected datasets, we have used a pre-trained BERT
model. Actually, it is the BERT for sequence classification pre-trained model. It belongs to the
category of BERT base models with respect to their size. The model parameters, both those
of the pre-trained model and those derived after fine-tuning it for the case of vulnerability
prediction that we investigate in the present analysis are shown below:

Parameters Values

Number of layers 12

Hidden size 768

Total parameters 110M

Learning rate 2e-5

Number of epochs 2-4

Batch size 2

The VPMs that were implemented both for the Java dataset and also for the C++ dataset were
then evaluated with respect to their predictive performance. For the evaluation of the
models, we employed the 10-fold cross-validation technique. As a measure of predictive
performance, we decided to use the F2-score. The reasoning behind the selection of this
evaluation metric is that the F2-score takes into account both the Recall and the Precision of
the produced model, but puts more emphasis on the Recall, which is more important for
vulnerability prediction since it is important for a VPM not to miss existing vulnerabilities. The
results are summarized in the table below:

Model F2 score (%)

Java 70.01

Cpp 78.73

The results of the experiments indicate that the models can identify vulnerabilities in the
software to a satisfying degree. More specifically, the F2-score in both cases was found to be
above 70%, which is considered sufficient in the literature, and for the case of C++ the F2-
score is close to 80%, which is considered high. This suggests that the utilisation of BERT may
lead to VPMs with sufficient predictive performance. In the rest of the project, we will further
examine the capacity of BERT to be used in vulnerability prediction. More specifically, (i)
additional datasets will be considered in order to investigate the generalizability of these
observations, (ii) BERT alternatives like codeBERT will be also examined in order to see if more
code-related models lead to better results, and (iii) a comparison between models utilising
BERT and models based simply on text mining approaches (e.g., BoW and token sequences)
without dedicated transformations will be conducted.

https://creativecommons.org/licenses/by/4.0/

81

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Photo by Hush Naidoo Jade Photography on Unsplash

Testing Cloud-Based Applications
By KAIROS DS

Cloud-based solutions are all the rage these days. The cloud approach is becoming extremely
popular in many business areas due to advantages such as scalability, enhanced productivity,
better traffic and transaction management, and significantly lower equipment costs.
Moreover, a cloud-based solution makes digital operations more streamlined and provides
businesses of any size with greater flexibility.

This migration of applications to the cloud has made software testing become an essential
part of the business cycle. The switch to distributed and component-based applications,
which is the basis for the touted flexibility and scalability, has also introduced additional layers
of complexity and potential points of failure and communication, making testing cloud-based
systems a vital business function.

Types of Tests
Generally speaking, every software application development must involve several types of
testing distributed along the lifecycle of the product. The purpose of all such testing is to
ensure the product meets both functional and non-functional requirements and to deliver a
high-quality end product that will delight users. Typically, the types of testing that any
application should go through are the following:

Functional testing

Functional testing ensures that the product actually provides all the services and
functionalities as advertised and that the business requirements are being met. The main
types of functional testing are:

• Component and Unit Testing: This kind of test is performed by developers to validate
specific functionality for each unit of an application. During unit testing, each unit of
code and component is tested in isolation to make sure that it works as intended and
provides the expected results.

• Integration Testing: This ensures that the modules of an application are working fine
and helps verify the combined functionality. Integration tests allow operational
commands and data to act as a whole system, rather than as individual components.
This type of testing is especially relevant to UI operations, operation timing, API calls,
data formats, and database access.

• Acceptance Testing: These tests are performed by a selected group of end-users that
will be given access to a functional version of the application and will validate whether
the application is good enough (accepted) or not. In other words, they indicate if the
application meets the business objectives.

https://creativecommons.org/licenses/by/4.0/
https://unsplash.com/@hush52?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/doctor-patient?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

82

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

However, for cloud-based products, it’s essential to make sure that the product (or service)
not only meets its functional requirements but also the non-functional ones. So a strong
emphasis needs to be laid on non-functional testing as well.

Non-functional testing

Non-functional testing focuses on verifying cloud computing characteristics and features:

• Security Testing: A cloud offering must guarantee that the data and resources of the
system are protected from any unauthorized access, but it also must be protected
from threats or misuses that can take the entire system down. This can be complex
and, at a minimum, involves the following:

o Vulnerability scanning: This is done through automated software to scan a system
against known vulnerability signatures.

o Security scanning: Identifies network and system weaknesses, and provides a basis
for defining solutions for reducing these risks. Both manual and automated
scanning can be performed.

o Penetration testing: This kind of testing simulates an attack from a malicious
hacker. It involves the analysis of a particular system to check for potential
vulnerabilities to an external hacking attempt.

o Risk assessment: This is an assessment of the security risks that is made at a broad
organizational level, involving analysis of the software itself, as well as the
processes and the technologies used. Risks are classified as Low, Medium, and
High. The result of this testing is a list of recommended controls and measures to
reduce the risks.

o Ethical hacking: This involves hacking into the software systems to understand
vulnerabilities. Unlike malicious hackers, who steal for their own gain, the
underlying intention is to expose security flaws.

• Multi-tenancy Testing: Multi-tenancy refers to a cloud-based service that
accommodates multiple clients or organizations. The service is typically customized for
each client and provides data and configuration level security to avoid any access-
related issues. A cloud-based offering should be thoroughly validated for each client
whenever multiple clients are to be active at a given time.

• Performance Testing: Performance testing checks the speed, response time,
reliability, resource usage, and scalability of a cloud offering under an expected
workload. A cloud-based offering should be “elastic”, allowing for the increase or
decrease of on-demand resource usage, while maintaining a desired throughput level.
The goal of performance testing is to eliminate performance bottlenecks in the
software. There are many types of performance tests. These are some of the most
common:

o Smoke tests verify that the system can handle a minimal load without problems.
o Load tests are primarily concerned with assessing the performance of the system

in terms of concurrent users or requests per second.
o Stress tests and spike tests assess the limits of your system and stability under

extreme conditions.
o Soak tests evaluate the reliability and performance of a system over an extended

period of time.

• Availability Testing: Availability testing provides a measure of how often any given
software is actually on hand and accessible for use. Cloud offerings must be available
at all times. It is the responsibility of the cloud service provider to ensure that there
are no abrupt downtimes. This kind of testing is primarily based on observation of the
system being used along with the Quality of Service (QoS) level guaranteed by the
service provider.

• Disaster Recovery Testing: This is a measure of the time it takes for a cloud application
to recover from a disastrous failure. It may encompass certain hard measures like
rolling back databases or deployments. In the case of a failure, recovery time must be

https://creativecommons.org/licenses/by/4.0/

83

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

low. Verification must be done to ensure the service is back online with minimal
adverse effects on the client’s business.

• Interoperability Testing: Any cloud application must work in multiple environments
and platforms. It should also have the capability to be executed across many cloud
platforms. It should be easy to move cloud applications and platforms from one
infrastructure (as a service) to another infrastructure.

Testing Throughout the Software Development Life
Cycle
Now, it becomes obvious that not all of those tests can be carried out at the same time, nor
by the same set of persons, nor at the same stage of the project. However, when and how we
apply all of these testing techniques plays a critical role in the quality of the resulting product.

If we look at the typical Software Development Life Cycle (the process of building software
while ensuring the quality and accuracy of the software being built), it defines a series of
stages and procedures. Each stage leads to the next step and produces results that move the
development towards a completed product. Stages are typically defined as follows:

• Planning stage (also called the feasibility stage) is the phase in which developers plan
for the upcoming project. Here, the problem to be solved and project scope are
defined, along with determining project objectives.

• Requirements analysis stage, includes gathering all the specific details required for a
new system, as well as determining initial prototype ideas.

• Design and prototyping stage, where developers will outline high level application
requirements, along with more specific aspects, such as:

o User interfaces
o System interfaces
o Network and network requirements
o Databases

• Development stage, where developers actually write code and build the application
according to the earlier design documents and outlined specifications.

• Testing stage, where software is tested to make sure that there aren’t any bugs, and
that the end-user experience will not be negatively affected at any point. During the
testing stage, developers will go over their software with a fine-tooth comb, noting
any bugs or defects that need to be tracked, fixed, and later retested.

• Integration and implementation (or deployment) stage, where the system will be
integrated into its environment and eventually deployed. After passing this stage, the
software is theoretically ready for market and may be provided to any end-users.

• Operations and maintenance stage, where developers are responsible for
implementing any changes that the software might need after deployment, as well as
handling issues reported by end-users.

But how do the different kinds of tests relate to these stages? The following table attempts
to represent the existing relationship between the SDLC stages and each type of testing.

Phase Kind of tests

Planning Stage –

Requirements Analysis Stage –

Design and Prototyping Stage Process testing

Software Development Stage Unit testing
Component testing

Software Testing Stage Acceptance testing
Exploratory testing
Regression testing
Security testing

https://creativecommons.org/licenses/by/4.0/

84

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Implementation/Integration Integration testing
Smoke testing

Operations and Maintenance Stage Performance testing
Compatibility testing
Recovery testing
Availability testing

Looking at the stages, one could think that all tests will happen on the so-called “testing
stage”. This is mostly true in a typical waterfall model of software project management,
where a phase-only begins when the previous one has already finished. The fact that tests
are left to the later stages when development is –theoretically- finished, is usually the main
cause of project failures following this methodology, due to the difficulty (or even the
impossibility) of applying proper corrections at such a late stage.

Fortunately, modern software development methodologies, especially the agile ones,
attempt to fix this with two breaking changes:

• short feedback loops, i.e. show working things early and repeatedly, so that any
misunderstanding or deviation can be tackled soon.

• test from the beginning, so that any defect can be found and fixed as soon as possible.

In short, agile methodologies look for integrating all — or as many as possible — of the
activities inside the development iterations, because everything done within one iteration
provides feedback for the next iteration.

In this light, we can see that all functional testing is actually carried out by developers during
the development phase. Following the modern methodologies, developers leverage
techniques like TDD (Test-Driven Development) for crafting unit tests, component tests, and
integration tests, which also help them get good internal quality. They also write regression
tests to ensure that any previously fixed bug does not come to life again. Acceptance tests for
each task are also included to ensure that the functionality works and is properly
implemented.

All of these types of tests are not only fully covered and automated, they are perfectly
assumed by the developers and completely integrated into their regular day-to-day work. This
means that the development team gets quick and frequent feedback and information on
these aspects, and are able to respond immediately to any incident related to them.

However, in the non-functional part, the situation is not so clear. There are certain kinds of
tests that have already been adopted by the development teams. Examples include aspects
like multi-tenancy or data access control, for which tests are already usually developed as
part of the regular component tests.

On the other hand, aspects like availability testing or disaster recovery testing, which are less
of a test, are usually not activities present in the day-to-day of the development team. The
availability of a service, being a measure of how the service behaves over time, becomes a
mark on the service monitoring activities rather than a development task. And disaster
recovery requires a complete contingency plan that rarely fits the development team’s tasks.
These kinds of “tests” cannot be easily integrated into a development workflow.

https://creativecommons.org/licenses/by/4.0/

85

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

Others, like security and performance testing, are in an intermediate adoption stage.

Regarding security, it is now relatively common that development teams integrate a static
code analysis tool in their Continuous Integration system, which analyzes the code based on
a pre-set collection of rules looking for common errors and design flaws. But it also provides
relevant information regarding possible security holes or weaknesses that appear or can be
inferred directly from the source code. However, this is only a small part of what a
comprehensive security testing suite should be. Penetration testing, system security
scanning, and auditing, along with ethical hacking among others, should also be part of this
process. However, most of these activities are still manual and cannot be better automated
as part of a development workflow.

Finally, talking about performance testing, it turns out that it’s a kind of testing which is all
too often left for later stages of the development, taken as an afterthought, and even left to
users for validation. This is a practice that, when applied to a cloud-based application, can
severely damage the image of both the application and the company behind it. The main
reasons for this are usually:

• the need for having parts of the system developed.

• the difficulty of generating enough load on the system based on human testers alone.

Obviously, a functional system is needed to be able to actually perform this test. But then
again, following modern development methodologies, that occurs during the first stages. On
the other hand, there are available tools that help create the number of virtual users (i.e.
bots) needed to generate load on the system. These are scripted sequences of steps intended
to mimic the behavior of a real user (or maybe just to make some calls to an API). The funny
thing about this is that once there is a script to simulate one user, it’s just a matter of
configuring the script execution to generate the needed load for the test.

SmartCLIDE’s Take
The SmartCLIDE project seeks to foster and promote modern agile methodologies. The aim is
to democratize ownership of testing as well as software Quality Assurance among the whole
development team, making everyone responsible for the quality of their own developments.
With that in mind, we are building a tool that will provide developers with plenty of utilities
to build high quality software, offering the best support for each stage of development. Being
a cloud-based tool, and looking specifically after cloud-oriented developments, we have put
special extra attention on some critical points. According to the analysis presented earlier,
testing is supported right from the process definition stage, going through unit test
generation and code recommendations, all the way up to code analysis and deployment.

Since that is quite common among IDEs nowadays, we wanted to go one step further by
helping to integrate some of those activities related to non-functional requirements of cloud
offerings. So, in SmartCLIDE, developers will find the following interesting features:

• Security analysis integration, including reporting of metrics, weaknesses detected, and
improvement points.

• Performance testing integration, including a test generator that helps create the test
suite.

• Technical debt cost analysis, to inform about the estimated cost of fixing the detected
technical debt left in the code.

• Deployment cost estimation, to help decide whether a cloud provider is, economically
speaking, a suite for the needs.

https://creativecommons.org/licenses/by/4.0/

86

@SmartCLIDE. This work is licensed under a Creative Commons CC BY 4.0 License

About SmartCLIDE
The SmartCLIDE project enables organizations on the path
to digitalization to accelerate the creation and adoption of
Cloud solutions.

The innovative smart cloud-native development
environment will support creators of cloud services in the
discovery, creation, composition, testing, and deployment
of full-stack data-centered services and applications in the
cloud.

This project has received funding from the European Union’s Horizon 2020 research
and Innovation programme under grant agreement No 871177

https://creativecommons.org/licenses/by/4.0/

	Content
	Figures
	Tables
	Project consortium
	Introduction
	Context and motivation
	Challenge
	Solution
	Impact
	Benefits for the targeted users

	Let's lay the foundation
	Cloud Computing in a nutshell
	Types of Cloud Computing services
	The Pizza Analogy
	Latest advances
	Benefits and Pitfalls
	Top Cloud Providers according to revenue
	Bibliography

	Machine Learning and Deep Learning: A power couple
	Modeling algorithms
	Approaching Neural Networks: Deep Learning
	How can Deep Learning and Machine Learning help SmartCLIDE

	SmartCLIDE: a new cloud-native IDE
	Service Discovery in a Nutshell
	How does Service Discovery Work?
	Examples of Service Discovery in Industry
	References

	Programming By Example
	PBE Application and generated output
	ML vs PBE
	Programming By Example in SmartCLIDE

	Our scenarios of use
	About LoRaWAN communication services
	The concept
	Docker container Kubernetes-based deployment
	SmartCLIDE benefits

	Enhance IoT-Catalogue with an integrated Cloud IDE
	Business needs
	SmartCLIDE benefits

	Provide a Quick Demonstration for a Customer
	Design principle: modular instead of monolithic
	Business Needs and Challenges
	Working with SmartCLIDE

	Optimizing Resources

	Deep dive
	SmartCLIDE Innovative Approaches
	References

	SmartCLIDE Market Requirements
	The road towards microservices
	Quality and security in a microservices world

	SmartCLIDE Service Creation
	SmartCLIDE Deep Learning Engine
	References

	SmartCLIDE User Interface
	Workflows
	Services
	Deployments

	SmartCLIDE DLE Component

	Backend services
	Source Code Repository
	Service Discovery, Creation and Monitoring
	Discovery of Services and Resources
	Service Creation, Composition and Testing
	Runtime Monitoring & Verification
	References

	Security
	References

	Intercommunication
	References

	User Access Management
	Deployment and CI/CD
	Deployment and deployment monitoring service
	SmartCLIDE CI/CD

	Tool Support for Architectural Pattern Selection in Cloud-centric Service-oriented IDEs
	Runtime Monitoring and Verification (RMV)
	SmartCLIDE Quality Assurance
	Complementary Quality Assurance Methods
	Runtime Monitoring & Verification
	References

	Vulnerability prediction based on Text Mining and BERT
	Vulnerability Prediction – Importance and Challenges
	What is BERT?
	Vulnerability Prediction Models using Text Mining and BERT

	Testing Cloud-Based Applications
	Types of Tests
	Testing Throughout the Software Development Life Cycle
	SmartCLIDE’s Take

